Name			em		_//			
Chapter 13 – l Solve the follow of the problem.	wing gas, thermo	dynamic and equ	uilibrium proble	ms. Circ	cle and write	the correct let	tter on the line in front	
1 The density of an unknown gas is 4.20 grams per liter at 3.00 atmospheres pressure and 127 $^{\circ}$ C. What is the molecular weight of this gas? (R = 0.0821 liter-atm / mole-K)								
(A) 14.6	(B) 46.0	(C) 88.0	(D) 94.1	(E) 138				
$\Delta H_f^{\circ} H_2O(l) = -$ $\Delta H_f^{\circ} CO_2(g) = -$	393.3 kJ / mole lard heat of format	ion of methane, Δ (B) -107.5 kJ/mo	H _f ° CH₄(g), as ca	lculated fi (C) -75.	rom the data al 8 kJ/mole	bove?		
	When the actual g law does NOT ind (B) mass			ne predict (E) shap		gas law, the ea	xplanation lies in the fact	
°C, the vapor pro	Hydrogen gas is cessure of water is 2 (B) 733 mm Hg	2 millimeters of n	nercury. What is the	he partial	pressure of the		meters of mercury. At 24 s?	
	pressure remains		al temperature of			is heated until	it occupies a volume of	
(A) $K = [HCO_3]$	Which of the following the following the second of the sec	O ⁺])	ct equilibrium exp $\left[\left[H_{3}O^{+}\right] \right] /\left[HCO^{-}\right] $	(B) K = (D) K =	or the hydrolys ([HCO ₃ ⁻][O [CO ₃ ²⁻]/([O	sis of CO ₃ ²⁻ ? H ⁻]) / [CO ₃ ²⁻] CO ₂] [OH ⁻] ²)]	
7(A) ½	As the temperature (B) $\sqrt{(313/293)}$	re is raised from 20 (C) 313		iverage ki	inetic energy o (E) 4	f neon atoms c	hanges by a factor of	
	° C and the same v				nd 0.216 atmos (E) 0.533 atm		would be the pressure of	
9	Based on the info Na ₂ O(s)	rmation below, where $H_2O(1) \rightarrow 2$ Na		enthalpy	change for the	e following rea	ction?	
$H_2(g) + (\frac{1}{2}) O_2(g)$	$g) \rightarrow H_2O(1)$		$\Delta H^{\circ} = -286 \text{ kJ}$					
$2 \text{ Na(s)} + (\frac{1}{2}) \text{ O}_2$	$g(g) \rightarrow Na_2O(s)$		$\Delta H^{\circ} = -414 \text{ kJ}$					
_	$(1/2) H_2(g) \rightarrow N$			$\Delta H^{\circ} = -$				
(A) -1,125 kJ	(B) -978 kJ	(C) -722 kJ	(D) -150 kJ	(E) +27	5 kJ			
	A hydrocarbon goossible formula for (B) C ₂ H ₄			nas a dens (E) C ₅ H		ms per liter at	0 °C and 1.00	
	s of the gas? (The	gas constant, R, is (B) 16.2 grams/n	0.0821 L atm mo	1 ⁻¹ K ⁻¹). (C) 37.0	atmospheres pi	ressure has a vo	olume of 2.00 liters. What	

Which of the following I. [HCl] II. [O ₂] I		te at equilibrium? $[Cl_2]$. an $[HCl]$.	ystem are a			m as represented by the equation above.
	(B) II only	(C) I and III only	y ((D) II and III	only	(E) I, II, and III
the reactants and Based on these re	the product reach	equilibrium and t	ced in an ev he initial te	vacuated 1.0 emperature is	s restored, the	ne reaction represented above occurs. After flask is found to contain 0.30 mole of SO ₃ .
						for this observation?
(A) The pressure						convection currents.
(C) The cooler air	=				ioon produces	convection currents.
(D) The rate of di		_				
(E) The air densit	y inside the ballo	on is less than that	t of the sur	rounding air.		
A 0.03 mol sample heated. NH ₄ NO ₃ of is closest to which (A) 3 atm	decomposes comp	oletely according t	evacuated for the balan	lask, which ced equation tant, R, is 0.0	above. The to	otal pressure in the flask measured at 400 K
16 For the reaction of H ₂ O(l), rather that (A) -1,235 kJ	n water vapor H ₂ 0		s - 1,323 kJ phase char	J. What is the nge $H_2O(g)$	e value of ΔH	if the combustion produced liquid water 4 kJ mol ⁻¹ .)
Questions 17–19	refer to the follow	wing gases at 0°C	and 1 atm.			
(A) Ne	(B) Xe	(C) O ₂	(D) CO	(E)	NO	
17	_ Has an average a	atomic or molecul	lar speed cl	osest to that	of N ₂ molecul	les at 0°C and 1 atm
18	_ Has the greatest	density				
19	_ Has the greatest	rate of effusion th	nrough a pii	nhole		
20in the flask is 800 (A) 800 mm Hg	mm Hg. What is	the partial pressu	re of the SO		flask?	toole of $O_2(g)$. The total pressure of the gases 60 mm Hg
		$3 C_2 H_2(g) \rightleftharpoons 0$ and and enthalpy charges		for the react	ion represente	d above? (ΔH°_{f} of $C_{2}H_{2}(g)$ is 230 kJ mol ⁻¹ ;
$\Delta H_{\rm f}^{\circ}$ of $C_6 H_6(g)$ i (A) -607 kJ	s 83 kJ mol ⁻¹ .) (B) -147 kJ	(C) -19 kJ	(D) +19 k	(E)	+773 kJ	
22. (A) SO ₂	_ A 2 L container (B) N ₂	will hold about 4 (C) CO ₂	g of which (D) C ₄ H ₈		wing gases at NH ₃	0°C and 1 atm?

CS ₂ (l) +	$3 O_{2}(g)$	\Box CO ₂ (8	$g) + 2 SO_{s}$	$_{2}(g)$						
31.	What vo	olume of	$O_2(g)$ is i	required	to react with exc	ess CS ₂ (l)	to produce	4.0 L of CO ₂ ((g)? (Assume all ga	ses are measured at
$0^{\circ} C$ and	1 atm.)									
(A)	12 L	(B)	22.4 L	(C)	$^{1}/_{3}$ \square 22.4 L	(D)	2 🗆 22.4	L (E)	3 □ 22.4 L	
HCO ₃ (a	(q) + OF	$\mathbf{H}^{-}(aq) \leftrightarrow$	• H ₂ O(<i>l</i>) +	- CO ₃ ²⁻ (a	$\Delta H =$	–41.4 kJ			100	2_1
37.	When th	he reaction	on represe	ented by	the equation abo	ve is at ec	uilibrium at	1 atm and 25	$^{\circ}$ C, the ratio $\frac{[\text{CO}_3]^2}{[\text{HCO}]^2}$	can be increased
by doing	which o	of the fol	llowing?							
(A) (C)		sing the t a catalys	emperatu st		(B) liluting the solution (E) Bubblis	on with d			.0	,
40.	An exce	ess of M	g(s) is add	ded to 10	00. mL of 0.400 A	∥ HCl. At	0°C and 1 a	tm pressure, v	what volume of H	gas can be obtained
(A)	22.4 mI		44.8 mI		224 mL (D)	448 m		396 mL	2	
$H_2(g) + 1$	$\operatorname{Br}_{2}(g) \leftarrow$	→ 2 HBr((g)							
42.	At a cer	tain tem	perature, t	the value	e of the equilibriume temperature?	ım consta	nt, K , for the	e reaction repr	resented above is 2.	$0 \square 10^5$. What is the
(A)	-2.0	10 ⁻⁵	(B)	5.0 \(\sigma \)	10^{-6} (C)	2.0 □	10 ⁻⁵	(D) 5.0 [10^{-5} (E)	$5.0 \Box 10^{-4}$
(A) (B) (C)	ounted for increasi decreasi increasi increasi	or by the ng streng ing size on ng electrong ng numb	gth of the of the centronegativities	bonds tral atom ty of the hared pai		ecrease in	the bond an	gles in the ser	ries of molecules C	$\mathrm{H_4},\mathrm{NH_3},\mathrm{and}\mathrm{H_2O}$ is