| Name | AP Chemistry | |---|--| | HW 1: Due 2/6/15 Co
and clearly label all fi | mplete both free response questions. One will be graded. Show all work. Box
nal answers | | (a) Calculate the total press(b) The temperature of the s(i) The mole fracti(ii) The partial pre | contains 19.73 g of $Cl_2(g)$ and 19.73 g of $F_2(g)$. are, in atm, of the gas mixture in the cylinder at 298 K. gas mixture in the cylinder is increased to 370 K. Calculate each of the following. on of $F_2(g)$ in the cylinder stravel at a rate of 361 m/s at 370 K, at what rate will the fluorine molecules travel? | | where a reaction occurs to p
(d) Write the balanced equa | 2. Butane, C_4H_{10} , is a hydrocarbon that is commonly used as fuel for in lighters. | |---| | (a) Write a balanced equation for the complete combustion of butane gas, which yields $CO_2(g)$ and $H_2O(l)$. (b) Calculate the volume of air at 73°C and 1.00 atmospheres that is needed to burn completely 37.0 grams of butane. Assume that air is 21.0 percent O_2 by volume. (c) The heat of combustion of butane is -2,881.9 kJ/mol. Calculate the heat of formation, ΔH°_{f} , of butane given that ΔH°_{f} of $H_2O(l) = -285.3$ kJ/mol and ΔH°_{f} of $CO_2(g) = -393.5$ kJ/mol. (d) If the enthalpy of vaporization for $H_2O(l)$ is 44.0 kJ/mol, what is ΔH° for the combustion reaction above if $H_2O(g)$ is formed instead of $H_2O(l)$? (e) Assuming that all of the heat evolved in burning 73.0 grams of butane is transferred to 11.06 kilograms of water (specific heat = 4.184 J/g · K), calculate the increase in temperature of the water. | | | | | | | | | | | | | | | | | | <u></u> |