Name		AP (Chem	//				
Chapter 13 HW #2 Write the letter of the best answer on the line in front of the question.								
 PCl₃(g) + Cl₂(g) ⇒ PCl₅(g) + energy Some PCl₃ and Cl₂ are mixed in a container at 200 °C and the system reaches equilibrium according to the equation above. Which of the following causes an increase in the number of moles of PCl₅ present at equilibrium? I. Decreasing the volume of the container III. Raising the temperature III. Adding a mole of He gas at constant volume 								
(A) I only	(B) II only (C)	I and III only	(D) II and III o	only (E) I, II, and III				
2. $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g) + \text{heat}$ When 0.40 mole of SO ₂ and 0.60 mole of O ₂ are placed in an evacuated 1.00-liter flask, the reaction represented above occurs. After the reactants and the product reach equilibrium and the initial temperature is restored, the flask is found to contain 0.30 mole of SO ₃ . Based on these results, the expression for the equilibrium constant, K _c , of the reaction is:								
(A) $(0.30)^2 / [(0.45)(0.10)]$) ²] (B) (D) (0.30) / [(0.45)(0	$(0\ 30)^2$ / [(0.60)(0.44) 10)]	(E) (0.30) / [(0)	2 x 0.30) / [(0.45)(2 x 0.10)] 0.60)(0.40)]				
 3After the equilibrium represented above (in question 2) is established, some pure O₂ (g) is injected into the reaction vessel at constant temperature. After equilibrium is reestablished, which of the following has a lower value compared to its value at the original equilibrium? (A) K_{eq} for the reaction (B) The total pressure in the reaction vessel. (C) The amount of SO₃ (g) in the reaction vessel. (D) The amount of O₂ (g) in the reaction vessel. (E) The amount of SO₂ (g) in the reaction vessel. 								
 4Which of the following changes alone would cause a decrease in the value of K_{eq} for the reaction represented above (in question 2)? (A) Decreasing the temperature (B) Increasing the temperature (C) Decreasing the volume of the reaction vessel (E) Adding a catalyst 								
5 Given the equation $2A(g) \rightleftharpoons 2B(g) + C(g)$. At a particular temperature, $K = 1.6 \times 10^4$. If you mixed 5.0 mol B, 0.10 mol C, and 0.0010 mol A in a one-liter container, which direction would the reaction initially proceed? (A) To the left. (B) To the right. (C) The above mixture is the equilibrium mixture. (D) Cannot tell from the information given. (E) None of these (A-D).								
6A 1.00-g sample of a gaseous compound of boron and hydrogen occupies 0.820 L at 1.00 atm and 3°C. What could be the molecular formula for the compound?								
(A) BH ₃	$(B) B_2 H_6$	(C) B_4H_{10}	(D) $B_{3}H_{12}$	(E) B_5H_{14}				
7The mmHg, respectively. Cal (A) 20.4			nple of gas were f (D) 0.751	Cound to be 135 mmHg, 508 mmHg, and 571 (E) 0.359				
8Wh	ich of the following stat H ₂ O(g) \rightarrow H ₂ O(l)	tements correctly des	scribes the signs o	f q and w for the following process at $P = 1$ atm				
(A) q and w are negative. (B) q is positive, w is negative. (C) q is negative, w is positive. (D) q and w are both positive. (E) q and w are both zero.								
9The Calculate the final pressu (A) 3 atm		nk containing a gas a	t 9 atm and a 10-1 (D) 15 atm	L tank containing a gas at 6 atm is opened. (E) none of these				

10Consider the following gas samp	ples:						
Sample A	Sample B						
$S_2(g)$	$O_2(g)$						
n = 1 mol $T = 800 K$	$n = 2 \mod T = 400 \mathrm{K}$						
P = 0.20 atm	P = 0.40 atm						
Which of the following statements is <i>false</i> ?	1 0.40 atm						
(A) The volume of sample A is twice the volume of sa	ample B						
(B) The average kinetic energy of the molecules in sar		average kinetic	energy of the molecules in sample B.				
(C) The fraction of molecules in sample A, having a kinetic energy greater than some high fixed value, is larger than the fraction of							
molecules in sample B, having kinetic energies greate			-				
(D) The mean square velocity of molecules in sample A is twice as large as the mean square velocity of molecules in sample B.							
(E) Assuming identical intermolecular forces in both s	samples, sample A s	hould be more	nearly ideal than sample B.				
11. Two metals of equal mass with	different heat capac	ities are subiec	ted to the same amount of heat. Which				
undergoes the smallest change in temperature?	uniferent neut capac	tiles are subjec	ted to the same another of heat. Which				
0 0 1	(B) The metal with	the lower heat	capacity.				
(C) Both undergo the same change in temperature.							
(E) You need to know which	ch metals you have.						
12 Consider the following process							
	H (kJ/mol) -125						
	150						
	350						
Calculate ΔH for: B \rightarrow E + 2C							
	(B) 525 kJ/mol		(C) –175 kJ/mol				
(D) –325 kJ/mol	(E) none of these						
12 The heat combustion of easture	$n_{0} \subset H(\alpha)$ at 25%	ia 1200 k I/m	nol. At this temperature, $\Delta H_{\rm f}^{\circ}$ values for				
13 The heat combustion of acetyle $CO_2(g)$ and $H_2O(l)$ are -393 and -286 kJ/mol, respect							
	(B) 625 kJ/mol	for dectylene	(C) 227 kJ/mol				
	(E) –227 kJ/mol						
14. At 25 °C, a sample of NH ₃ (mo	lar mass 17 grams)	effuses at the ra	ate of 0.050 mole per minute. Under the same				
conditions, which of the following gases effuses at ap							
(A) O_2 (B) He	$(C) CO_2$	(D) Cl_2	(E) CH_4				
Free Response							
Write the correct numeric value on the line for each of	f the following free	response questi	ions				
while the correct numeric value on the line for each of	i the following free	response questi	10115				
15. A 6.19 gram sample of PCl_5 is placed in an evacuated 2.00 liter flask and is completely vaporized at 252°C.							
(a) Calculate the pressure ion the flask if no chemical reaction were to occur.							
Actually at 252°C the PCl ₅ is partially dissociated acc			$PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g)$				
The observed pressure is found to be 1.00 atmosphere	. In view of this obs	ervation					
(b) Colculate the	partial procesure of L	Cl in the fleel	r at 252°C				
(b) Calculate the	partial pressure of I	CI3 III the mask	(at 252 °C.				
(c) Calculate the	e partial pressure of	PCl ₅ in the flas	sk at 252°C.				
	-						
(d) Calculate K _r	p						
(e) Calculate K _c	`.						
	J						