AP Chemistry

Chapter 14_HW 5: Due 11/18/16

Circle and write the letter of the correct answer on the line in front of each question.

 $HC_2H_3O_2(aq) + CN(aq) \Longrightarrow HCN(aq) + C_2H_3O_2(aq)$

The reaction represented above has an equilibrium constant equal to 3.7×10^4 . Which of the following can be concluded from this information?

a. $CN^{-}(aq)$ is a stronger base than $C_2H_3O_2^{-}(aq)$

b. HCN(aq) is a stronger acid than $HC_2H_3O_2(aq)$

c. The conjugate base of $CN^{-}(aq)$ is $C_2H_3O_2^{-}(aq)$

d. The equilibrium constant will increase with an increase in temperature.

e. The pH of a solution containing equimolar amounts of CN⁻(aq) and HC₂H₃O₂(aq) is 7.0.

2. _____ The strengths of five acids are listed below in decreasing order: $HBr > HF > HCN > H_2O > NH_3$ Which one of the following reactions will have an equilibrium constant less than one?

a.
$$HBr + H_2O \rightleftharpoons H_3O^+ + Br^-$$

b. $HF + OH^- \rightleftharpoons H_2O + F^-$
c. $H_2O + NH_2^- \rightleftharpoons NH_3 + OH^-$
d. $HCN + F^- \rightleftharpoons HF + CN^-$
e. $HBr + NH_3 \rightleftharpoons NH_4^+ + Br^-$

3-5 refer to the following.

Concentration (M)	pH of Acid 1	pH of Acid 2	pH of Acid 3	pH of Acid 4
0.010	3.44	2.00	2.92	2.20
0.050	3.09	1.30	2.58	1.73
0.10	2.94	1.00	2.42	1.55
0.50	2.69	0.30	2.08	1.16
1.00	2.44	0.00	1.92	0.98

The pH of solutions of four acids prepared at various concentrations were measured and recorded in the table above. The four acids are, in no particular order, chlorous, hydrochloric, lactic, and propanoic.

3. _____ For which acid is the value of the acid dissociation constant, K_a , the smallest? c. Acid 3 Which of the four acids listed in the table is hydrochloric acid? d. Acid 4 5. _____ Of the following species, which has the greatest concentration in a 1.0 *M* solution of acid 1 at equilibrium? a. OH^- b H_2O^+ c Acid 1 Which of the following can function as both a Brønsted-Lowry acid and Brønsted-Lowry base?a. HClb. H_2SO_4 b. H_2SO_4 c. HSO_2^{-1} c. HSO_2^{-1} 7. _____ The acid dissociation constant for HClO is $3.0 \ge 10^{-8}$. What is the hydrogen ion concentration in 0.12 M solution of HClO? c. $6.0 \ge 10^{-8}$ M d. $2.0 \ge 10^{-5}$ M e. $6.0 \ge 10^{-5}$ M a. $3.6 \ge 10^{-9}$ M b. $3.6 \ge 10^{-8}$ M $\underline{\text{HSO}_4^- + \text{H}_2\text{O}} \iff \underline{\text{H}_3\text{O}^+ + \text{SO}_4^{2-}}$ 8. In the equilibrium represented above, the species that act as bases include which of the following? III. SO4²⁻ II. H₂O I. HSO₄ a. II only b. III only c. I and II d. I and III e. II and III How many milliliters of water must be added to 10 milliliters of an HCl solution with a pH of 1 to produce a solution with a pH of 2? a. 10 mL b. 90 mL c. 100 mL d. 990 mL e. 1000 mL Which of the following statements is correct?a. HClO2 is a stronger acid than HClO3b. HI is a weaker acid than HClc. H3PO4 is a stronger acid than HClO4d. HNO3 is a stronger acid than HNO2 10. e. CH₃COOH is a stronger acid than CH₂BrCOOH

Name _

1.

11a. H ⁺	What is the conjugate base of HSO b. H_2SO_4 c. OH^-	$^{4^{-?}}_{d. SO_4^{2^{-}}}$ e. H ₃ O	0^+		
	Which of the following is the acid anhydride of a monoprotic acid?				
a. CaO	b. SO ₃ c. FeO	d. CO_2 e. N_2O_2	D_5		
13a. H ₂ O	In aqueous solution the amphiprotic b. Cl^{-} c. NH_{4}^{+}	c substance is: d. $Cr_2O_7^{2-}$ e. CH	₃ CH ₂ COOH		
14a. below 3.5	K _a of hydrocyanic acid, HCN, is 5. b. between 3.5 tween 9.0 and 9.5	0×10^{-10} . What is the pH of and 4.5 c. between the between	0.050 M HCN(aq)? ween 5.0 and 5.5		
15	The K _a for hydrofluoric acid is 6.8 centration is 7.4×10^{-3} M?	x 10^{-4} . What percentage of	f HF is dissociated in a 0.080 M solution where		
a. 12.3%	b. 4.25% c. 9.2%	d. 1.12% e. 23.	6%		
16a. H ₂ SO ₄ and	Which of the following is not a con SO ₄ ²⁻ b. HC d. HPO ₄ ²⁻ and PO ₄ ³⁻	njugate acid-base pair? l and Cl ⁻ e. H ₂ S and HS ⁻	c. NH_3 and NH_2^-		
17a. 1	The pH of 0.01 M acetic acid ($K_a = b$. 2 c. 3	1.8 x 10 ⁻⁵) is closest to: d. 7 e. 11			
18a. sulfuric acia	The only acid that is both a strong a d b. perchloric ac	cid and a weak acid on disc bid c. nitr	sociation is: ic acid		
d. hydrochloric acid e. phosphoric acid					
19a. 1.00 mL	How many mL of 10.0 M HCl are n b. 10.0 mL c. 20.0 mL	d. 100. mL e. 200	of 2.00 M HCl?). mL		
20a. increases by	As the pH of a solution is changed f	from 3 to 6, the concentrati	on of hydronium ions		
c. decreases by	y a factor of 3	b. increases by a factord. decreases by a factor	of 1000		
21.	Which substance is an Arrhenius aci	d?			
a. Ba(OH) ₂	Which substance is an Arrhenius aci b. CH ₃ COOCH ₃	c. H ₃ PO ₄	d. NaCl		
22a. CH ₃ COOH	Which compound releases hydroxide b. CH ₃ OH	e ions in an aqueous solutio c. HCl	on? d. KOH		
23 The pH of an aqueous solution changes from 4 to 3 when the hydrogen ion concentration in the solution is					
	y a factor of 3/4 y a factor of 4/3	b. decreased by a factord. increased by a factor			
a. hydride ion	An Arrhenius base yields which ion b. hydrogen ion	c. hydronium ion	d. hydroxide ion		
25a. accepts an H	According to one acid-base theory, H^+ b. accepts an OH^-	a water molecule acts as ar c. donates an H^+	acid when the water molecule d. donates an OH ⁻		
26a. CH ₃ COOH	Which two formulas represent Arrh and CH_3CH_2OH b. $HC_2H_3O_2$ and	enius acids? d H ₃ PO ₄ c. KHCO ₃ a	and KHSO ₄ d. NaSCN and $Na_2S_2O_3$		
27 Which formula represents a hydronium ion? a. H_3O^+ b. NH_4^+ c. OH^- d. HCO_3^-					
a. H ₃ O ⁺	b. NH_4^+	c. OH ⁻	d. HCO₃ [−]		
28 What is the pH of a solution that has a hydronium ion concentration 100 times greater than a solution with a					
pH of 4? a. 5	b. 2	c. 3	d. 6		