AP Chemistry

This is an old AP Chemistry Exam from 10/3/2006. Part I (Multiple Choice): 45 Questions, 45 minutes, No Calculator Allowed. That year the results were:

You can use extra time and a calculator if you want but use this assignment to self-assess where you are at. You will turn this assignment in on Monday 11/9 and it will be graded on correctness so do your best.

2006-2007			
Top	36/45		
Score	80%		
Average	24/45		
Score	53%		
Lowest	8/45		
Score	18%		

HW Due: 11/9/2015

SO	do your best.	Lowest Score	8/45 18%				
B	ubble the correct answer on the blue side of your scantron for each of the following.						
1.	Which of the following pairs of compounds can be used to illustrate the law of multiple proportions? a. H_2O and H_2O_2 b. HCl and $HClO_3$ c. KBr and KCl d. NH_3 and NH_4Cl e. $AgNO_3$ and Ag_2SO_3						
2.	A pure sample of KClO ₃ is found to contain 71 grams of chlorine atoms. What is the mass of the sample a. 122 grams b. 170 grams c. 209 grams d. 245 grams e. 293 grams	e?					
3.	Estimate the mass of $CaCl_2$ (molar mass = 110.0) required to prepare 75.00 mL of a 2.000 M solution of a. 150 g b. 16.65 g c. 8.325 g d. 1.65 x 10^4 g e. 222 g	this salt.					
4.	When the following half reaction is balanced with the smallest whole number coefficients, it will contain a. $2e^{-}$ on the right side b. $4e^{-}$ on the left side c. $2H_{2}O$ on the right side d. $2H^{+}$ on the left side e. a coefficient of 2 for NO	$: NO_3 \rightarrow$	NO				
	How many grams of lead(II) nitrate $[Pb(NO_3)_2]$ must be weighed in order to have exactly 3.00 grams of ass of lead nitrate is 331. a. $4.80 g$ b. $0.626 g$ c. $130 g$ d. $3.90 g$ e. $48.0 g$	lead atoms? T	he molar				
6. $2MnO_4^- + 5SO_3^{2-} + 6H^+ \rightarrow 2Mn^{2+} + 5SO_4^{2-} + 3H_2O$ Which of the following statements is true regarding the reaction given above? a. MnO_4^- acts as the reducing agent b. H^+ acts as the oxidizing agent c. SO_3^{2-} acts as the reducing agent d. MnO_4^- is oxidized e. SO_3^{2-} is reduced							
	A student examined 2.0 moles of an unknown carbon compound and found that the compound contained rams of oxygen and 8 grams of hydrogen. Which of the following could be the molecular of the compound a. CH ₂ O b. CH ₂ OH c. CH ₃ COOH d. CH ₃ CO e. C ₂ H ₅ OH		carbon, 64				
8.	How much water must be added to a 50.0 mL solution of 0.60 M HNO ₃ to produce a 0.40M solution of a. 25 mL b. 33 mL c. 50 mL d. 67 mL e. 75 mL	HNO ₃ ?					
	$Al_2(CO_3)_3 + 6HC1 \rightarrow 2AlCl_3 + 3H_2O + 3CO_2$ When 5.00 mL of 6.00 M hydrochloric acid is added to 468 mg of aluminum carbonate (formula ne above balanced reaction, what is the maximum number of millimoles of CO_2 gas that will be evolved? a. 15 b. 5.0 c. 23.0 d. 6.0 e. 1.7	nass = 234) acc	cording to				
10. The molecular formula for the hydrated ferric oxide is generally written as Fe ₂ O ₃ * x H ₂ O because the water content in rust can vary. If a 1-molar sample of hydrated ferric oxide is found to contain 108 g of H ₂ O, what is the molecular formula of the compound? a. Fe ₂ O ₃ * H ₂ O b. Fe ₂ O ₃ * 3H ₂ O c. Fe ₂ O ₃ * 6H ₂ O d. Fe ₂ O ₃ * 10H ₂ O e. Fe ₂ O ₃ * 12H ₂ O							

a. Ca b. S c.

12. $2 \operatorname{ZnS}(s) + 3 \operatorname{O}_2(g) \rightarrow 2 \operatorname{ZnO}(s) + 2 \operatorname{SO}_2(g)$ If the reaction above took place at standard temperature and pressure, what was the volume of $\operatorname{O}_2(g)$ required to produce 40.0 grams of $\operatorname{ZnO}(s)$?

d. N

a.
$$\frac{(40.0)(2)}{(81.4)(3)(22.4)}L$$
 b. $\frac{(40.0)(3)}{(81.4)(2)(22.4)}L$ c. $\frac{(40.0)(2)(22.4)}{81.4)(3)}L$ d. $\frac{(40.0)(3)(22.4)}{(81.4)(2)}L$ e. $\frac{(81.4)(2)(22.4)}{(40.0)(3)}L$

11. Which of the following elements forms a polyatomic anion where it has an oxidation number of +6?

13. The	a. $SO_4^{2}(aq) + F$	on for the reaction $e^{2^+}(aq) \rightarrow FeSO_4(e^{2^+}(aq) \rightarrow FeSO_3(e) + FeSO_3(e)$	s) s)	b. d.	$Cl^{-}(aq) + Si$ $Na_2SO_4(s)$	$(aq) \rightarrow SiCl(s + Fe^{2+}(aq) \rightarrow Fe^{2+}(aq) $) $FeSO_4(s) + 2Na^+(aq)$
proper r	ance the following number of electronal	ns when needed. I	an acid solut $MnO_4^{2-} \rightarrow Mn$	ion usin	g the smalles	t possible who	ole number coefficients and entering the
	a. there should b	oe 4 electrons on to be 2 electrons on to e. this is not a h	he right side	d.	there should	d be 2 electron	s on the right side s on the left side
proper r	number of electron alanced half react	ns when needed. It ion the hydrogen is side b. 4 on	$MnO_4^{2-} \rightarrow Mn$ ons appear as	n ²⁺ s: c.	3 on the left		ole number coefficients and entering the
	of the following st a. dichromate ic	aq) + 14H ⁺ (aq) → tatements about th ons are oxidized by uced from -2 to 0 e. chromium is	is reaction is y Sn(II) ions	true? b.	hydrogen ic		d to H ₂ O omium does not change
When th	, there will be:						the smallest whole-number coefficients e right-hand side
	d. 3 ele	ectrons on the righ				s on the left ha	
18. The	compound that c a. NaOH	contains 10.4% ox b. CaO	ygen is: c. Al ₂ O ₃	d.	BaO	e. Ca(OH)	2
19. Ah	alogen, X, and an a. MX	alkaline earth me b. MX ₂	tal, M, can fo		mpound with M_2X_3	the formula: e. M_3X_2	
20. Wh	ich of the followi a. Ag	ng cannot be a red b. I	lucing agent? c. Fe ³⁺	d.	Cr ³⁺	e. Cl	
	a. The mass of Ib. Equal massesc. Equal numberd. The limiting s		e twice the material beformed and CO_2 will I_4 .	ass of C	O ₂ formed.	which of the fo	llowing will be true?
22. Hov	w many grams of a. 16 g	NaOH (molar mas b. 80. g	ss = 40.0 g/m c. 20. g		ontained in 5 64 g.	.00 x 10 ² mL of	of a 0.80 M sodium hydroxide solution? these
23. A b what wi	ll be the final con	centration of Pb ²⁺	ions in soluti	on?			lution of MgCl ₂ is added to the beaker,
	a. 0.20 M	b. 0.10 M	c. 0.050 M		0.025 M	e. 0.012 M	
24. An the subs		ce dissolves readi	ly in water bu	it not in	benzene (a no	onpolar solven	it). Molecules of what type are present in
	a. neither polar d. nong			polar none of	these	c. either po	olar or nonpolar

25. HCl(aq) + AgNO ₃ (ac) One half liter of a 0.20 m			-half liter of a 0.4	0 molar solution of AgNO ₃ . A reaction occurs forming	
a precipitate as shown abo					
a. 14 grams	b. 28 grams	c. 42 grams	d. 70 grams	e. 84 grams	
26. What is the mass ratia. 1.8 to 1	o of boron to fluor b. 3.0 to 1	ine in a boron trif c. 3.5 to 1	d. 5.3 to 1	e. 6.0 to 1	
27. An ion containing on a. ClO	ly oxygen and chlob. ClO ₂	orine is 31% oxyg c. ClO ₃	gen by mass. Wha d. ClO ₄	at is the empirical formula? e. Cl_2O^-	
28. A sample of propane $C_3H_8 + O_2 \rightarrow 3$		etely burned in air	r at STP. The read	action occurred as shown below:	
If 67 liters of CO ₂ were p a. 11 grams	roduced and all of b. 22 grams	the carbon in the c. 33 grams	CO ₂ came from the d. 44 grams	the propane, what was the mass of propane in the sample e. 55 grams	e?
29. What is the percent c a. Na 20%, N 20 c. Na 23%, N 14	0%, O 60% 4%, O 63%	b. Na 2	23%, N 14%, O 48 27%, N 16%, O 53	8%	
	ated in 7.4 grams			(OH) ₂ precipitate was formed. If all the calcium ions in encentration of the CaCl ₂ solution? e. 0.30 molar	
31. How many micron ar a. 10^6	re in a meter? b. 10 ⁻⁶	c. 10 ⁹	d. 10 ⁻⁹	e. none of these answers	
32. How may significant a. 3	figures are there is b. 4	n 0.0054020? c. 5	d. 7	e. 8	
33. When a solution of K Which of the following h a. K ⁺ has been c c. Cl ⁻ has been c	as occurred? exidized by Clooxidized by K	b. K ⁺ h	nas been oxidized nas been oxidized		
34. Which of the following a. Lavoisier	ng scientists is refe b. Dalton	rred to as the Fath c. Aristotle	ner of Modern Che d. Boyle	emistry? e. Priestly	
35. How many electrons a. 18	does a calcium ior b. 20	n have? c. 22	d. 21	e. 40	
36. Titanium metal is pretitanium and 40% oxygen a. TiO				with carbon and chlorine gas. By mass, rutile is 60% e. Ti_3O_2	
37. How many grams of a. 12.0 grams	carbon are present b. 18.0 grams	in 270. grams of c. 67.5 grams	glucose, C ₆ H ₁₂ O ₆ d. 72.0 grams	e. 108 grams	
b. The oxidationc. The oxidationd. The oxidation		g the reaction sho gen changes from en changes from - gen changes from en changes from -	wn above is corre +1 to 0. +5 to -3. +1 to -1. +5 to +3.	ect?	
39. CH ₃ CH ₂ OH(g) + The reaction above repres a. 3/2 moles	$O_2(g) \rightarrow CO_2(g)$ sents the oxidation b. 5/2 moles	$(g) + \underline{\qquad} H_2O(g)$ of ethanol. How c. 3 moles	many moles of O d. 7/2 moles	O ₂ are needed to oxidize 1 mole of CH ₃ CH ₂ OH? e. 4 moles	

40. What is the weight of NaNO ₃ (molecular weight 85.0) present in 100. mL of a 4.00 a. 8.50 grams b. 17.0 grams c. 25.5 grams d. 34.0 grams e. 51	
41. The following data were gathered in an experiment to determine the density of a set Mass of the sample = 7.50 grams Volume of the sample = 2.5 milliliters The density of the sample should be reported as:	
a. 3.00 g/mL b. 3.0 g/mL c. 3 g/mL d. 0.3 g/mL e. 0.3	3 g/mL
42. A method of separation where a mobile phase is passed through a stationary phase a. distillation b. decanting c. filtration d. electrolysis e. chromatogr	
43Be ₂ C +H ₂ O \rightarrow Be(OH) ₂ +CH ₄ When the equation above is balanced with the lowest whole-number coefficients for H a. 1 b. 2 c. 3 d. 4 e. 5	οO will be:
44. If the actual scientific value is 1.57 grams/mL, which of the following sets of result systematic error?	s shows poor accuracy, good precision and high
a. 1.68 g/mL, 1.68 g/mL, 1.68 g/mL b. 1.57 g/mL, 1.57 g/m	L, 1.57 g/mL
c. 1.68 g/mL, 1.57 g/mL, 1.49 g/mL d. 1.58 g/mL, 1.57 g/m e. none of these answers	L, 1.56 g/mL
45. The density values for 5 substances are given: Benzene (0.880 g/mL), Ethanol (0.7 g/mL) and Hydrochloric acid (1.19 g/mL). If you had 10.0 mL of each substance, which are ethanol by benzene conserving downward each substance, which is the substance of the s	