Name _____

d. 2.5 M

AP Chemistry

HW 4: Due 11/21/14 Complete both the multiple choice and free response question. All answers will be graded. Show all work. Box and clearly label all final answers

Multiple Choice - Circle and write the correct answer on the line in front of the question. 1. _____ Which of the following CANNOT occur together in solution? a. H_3PO_4 and $H_2PO_4^-$ b. HCO_3^- and CO_3^{2-} c. Na^+ and SO_4^{2-} d. $C_2O_4^{2-}$ and $H_2C_2O_4$ e. HPO_4^{2-} and PO_4^{3-} 2. _____ Which of the following best describes the pH of a 0.01 molar solution of HBrO ($K_a = 2 \times 10^{-9}$)? a. Less than or equal to 2.0 b. Between 2 and 7 d. Between 7 and 11 e. Greater that c. 7 e. Greater than or equal to 11 3. _____ Which of the acids below has the strongest conjugate base? a. H_2SO_3 b. HSO_3^- c. $HCIO_4$ d $HCIO_2^$ e. H₃BO₃ 4. <u>HCN(aq)</u> + $C_2H_3O_2(aq) \rightleftharpoons HC_2H_3O_2(aq) + CN(aq)$ The reaction represented above has an equilibrium constant equal to 2.7 x 10⁻⁵. Which of the following can be concluded from this information? a. $C_2H_3O_2(aq)$ is a stronger base than CN(aq)b. HCN(aq) is a stronger acid than $HC_2H_3O_2(aq)$ c. The conjugate base of HCN(aq) is $CN^{-}(aq)$ d. The equilibrium constant will decrease with an increase in temperature. e. The pH of a solution containing equimolar amounts of $CN^{-}(aq)$ and $HC_{2}H_{3}O_{2}(aq)$ is 7.0. Each of the following compounds was added to distilled water at 25°C. Which one produced a solution with a pH that was less than 7? b. O₂ d. MgO a. N₂ c. NaI e. SO_2 6. _____ Which of the following best describes NH₃? a. Arrhenius base b. Brønsted-Lowry base c. Lewis base e. Brønsted-Lowry and Lewis base d. Arrhenius and Lewis base 7._____ The strengths of five acids are listed below in decreasing order: $HI > HClO_2 > HF > H_2O > NH_3$ Which one of the following reactions will have an equilibrium constant less than one? a. $HCIO_2 + OH^- \rightleftharpoons H_2O + CIO_2^-$ b c. $HI + NH_3 \rightleftharpoons NH_4^+ + I^-$ d e. $H_2O + NH_2^- \rightleftharpoons NH_3 + OH^$ b. $HF + ClO_2^- \rightleftharpoons HClO_2 + F^$ d. HI + H₂O \rightleftharpoons H₃O⁺ + I⁻ _____ Which of the following is a Lewis acid-base reaction that is not a Brønsted-Lowry acid-base 8.___ reaction? a. $\operatorname{HC}_{2}\operatorname{H}_{3}\operatorname{O}_{2}(aq) + \operatorname{NH}_{3}(aq) \rightarrow \operatorname{C}_{2}\operatorname{H}_{3}\operatorname{O}_{2}^{-}(aq) + \operatorname{NH}_{4}^{+}(aq)$ b. $\operatorname{Ba}^{2+}(aq) + \operatorname{SO}_{4}^{-2-}(aq) \rightarrow \operatorname{Ba}\operatorname{SO}_{4}(s)$ c. $\operatorname{Zn}(\operatorname{OH})_{2}(s) + 2 \operatorname{OH}^{-}(aq) \rightarrow [\operatorname{Zn}(\operatorname{OH})_{4}]^{2-}(aq)$ d. $2 \operatorname{K}(s) + \operatorname{Br}_{2}(h) \rightarrow 2 \operatorname{KBr}(s)$ c. $\operatorname{Zn}(\operatorname{OH})_2(s) + 2 \operatorname{OH}^{-}(aq) \rightarrow [\operatorname{Zn}(\operatorname{OH})_4]^{2-}(aq)$ d. 2 K(s) + Br₂(l) \rightarrow 2 KBr(s) e. $N_2O_4(g) \rightarrow 2 NO_2(g)$ 9._____ The value of the acid-dissociation constant, K_a , for a weak monoprotic acid HA is 2.5×10^{-6} . The pH of 0.40 *M* HA is closest to: a. 2.0 b. 3.0 c. 4.0 d. 6.0 e. 8.0 10._____ In an aqueous solution with a pH of 11.50 at 25° C, the molar concentration of OH⁻(aq) is approximately b. $3.2 \times 10^{-3} M$ c. $2.5 \times 10^{-1} M$ M e. $3.2 \times 10^{11} M$ a. $3.2 \times 10^{-12} M$

Free Response - Answer all of the following questions. Be sure to label and box your answers.

 $\text{HNO}_2(aq) \rightleftharpoons \text{H}^+(aq) + \text{NO}_2(aq)$

Nitrous acid, HNO_2 , is a monoprotic acid that dissociates in aqueous solution, as represented by the equation above. Nitrous acid is 2.83 percent dissociated in 0.50 M HNO₂ (*aq*) at 298 K.

- a. Write the expression for the acid-dissociation constant, K_a, for nitrous acid and calculate its value.
- b. Calculate the pH of 0.50 M HNO₂.
- c. Calculate the pH of a solution formed by dissolving 0.045 mole of solid sodium nitrite, NaNO₂ in 250. mL of 0.50 M HNO₂. Assume that volume change is negligible.
- d. A 200. mL sample of 0.20 *M* HCl is added to 300. mL of 0.50 *M* HNO₂. Calculate the molar concentration of nitrite ion, NO₂⁻ in the resulting solution.