| Name | AP Chemistry | |---|--| | _ | 3: Due 12/7/15 Complete both free response questions. One will be graded. Show all early label all final answers | | (a) A saturated solution PbCl₂ is found to be 0.4 PbCl₂(s) ⇒ (i) Write the e (ii) Calculate t (iii) Calculate to (iii) Calculate to (c) Solid NaCl is added to the concentration of the concentration of the concentration of the value of K₅p for the concentration of the value of the concentration of the concentration of the value concentrati | ing questions that relate to solubility of salts of lead and barium. It is prepared by adding excess PbCl ₂ (s) to distilled water to form 1.0 L of solution at 25°C. The solubility of 4415 grams/100. ml H ₂ O. The chemical equation for the dissolution of PbCl ₂ (s) in water is shown below. Pb ²⁺ (aq) + 2Cl ⁻ (aq) quilibrium-constant expression for the equation. the molar concentration of Cl ⁻ (aq) in the solution. the value of the equilibrium constant, K _{sp} . It is prepared by adding PbCl ₂ (s) to distilled water to form 4.0 L of solution at 25°C. What are the molar aq) and Cl ⁻ (aq) in the solution? Justify your answer. It to a saturated solution of PbCl ₂ at 25°C. Assuming that the volume of the solution does not change, does the Pb ²⁺ (aq) in the solution increase, decrease, or remain the same? Justify your answer. It the salt BaSO ₄ is 1.5×10^{-9} . 7.0 mL sample of 2.16×10^{-2} M Ba(NO ₃) ₂ is added to 229.0 mL of 5.19×10^{-2} M Na ₂ SO ₄ tate form (you must justify with calculations). the concentration of the Ba ²⁺ at equilibrium. | #2. Answer the following questions about the solubility of the salts Li₃PO₄ and PbCl₂. Assume that hydrolysis effects are neg The equation for the dissolution of Li₃PO₄(s) is shown below. Li₃PO₄(s) ⇒ 3 Li⁺(aq) + PO₄³⁻(aq) K₅p = 3.2 × 10⁻⁰ at 25°C (a) Write the equilibrium-constant expression for the dissolution of Li₃PO₄(s). (b) Assuming that volume changes are negligible, calculate the maximum number of moles of Li₃PO₄(s) that can dissolve in (i) 0.50 L of water at 25°C | iligible. | |--|-----------| | (ii) 0.50 L of 0.20 M LiNO ₃ at 25°C
The equation for the dissolution of PbCl ₂ is shown below.
PbCl ₂ (s) \rightleftharpoons Pb ²⁺ (aq) + 2 Cl ⁻ (aq) $K_{sp} = 1.6 \times 10^{-5}$ at 25°C
(c) Calculate the concentration of Cl ⁻ (aq) in a saturated solution of PbCl ₂ at 25°C .
(d) An open container holds 1.000 L of 0.00400 M PbCl ₂ , which is unsaturated at 25°C . Calculate the minimum volume of warmL, that must evaporate from the container before solid PbCl ₂ can precipitate. | ater, in |