| Name | · | AP Chem | / | |----------------------|--|---|---| | Chap | ter 4 Homework #1 | | | | | | ad(II) nitrate to 15.0 mL of 1.0 M sodium iodide. | | | 1.
2.
3.
4. | What is the formula of the precipitate? What substance is the limiting reagent? What mass of precipitate formed? Determine the concentration of each ion | remaining in solution. | 1. | How many moles of solid $Ba(NO_3)_2$ should be added to 400. mL of 0.20 molar $Fe(NO_3)_3$ to increase the concentration of the NO_3^- ion to 1.0 molar? (Assume that the volume of the solution remains constant.) | |-----|--| | 2. | When 70. milliliters of 3.0 -molar Na_2CO_3 is added to 30 . milliliters of 1.0 -molar $NaHCO_3$ the resulting concentration of Na is: | | 3. | The weight of H_2SO_4 (molecular weight 98.1) in 250.0 milliliters of a 6.00 molar solution is: | | 4. | When 140. mL of 3.0-molar Na_2CO_3 is added to 30. milliliters of 1.0-molar $NaHCO_3$ the resulting concentration of Na^+ is: | | 5. | The weight of H_2SO_4 (molecular weight 98.1) in 50.0 milliliters of a 6.00 molar solution is: | | 6. | What is the final concentration of barium ions, $[Ba^{2+}]$, in solution when 100. mL of 0.10 M BaCl ₂ (aq) is mixed with 100. ml of 0.050 M H ₂ SO ₄ (aq)? | | 7. | How many moles of solid $Ba(NO_3)_2$ should be added to 300. mL of 0.20 molar $Fe(NO_3)_3$ to increase the concentration of the NO_3^- ion to 1.0 molar? (Assume that the volume of the solution remains constant.) | | 8. | How many moles of solid $Ba(NO_3)_2$ should be added to 700. mL of 0.20 molar $Fe(NO_3)_3$ to increase the concentration of the NO_3^- ion to 0.80 molar? (Assume that the volume of the solution remains constant.) | | 9. | When 90. milliliters of 3.0 -molar Na_2CO_3 is added to 40 . milliliters of 1.0 -molar $NaHCO_3$ the resulting concentration of Na is: | | 10. | The weight of H_2SO_4 (molecular weight 98.1) in 150.0 milliliters of a 3.00 molar solution is: | **Molarity Practice -** Solve each of the following without using a calculator.