AP Chemistry

___/__/___

Chapter 7 HW 5: Due 1/4/18 Complete the following multiple choice questions. All will be graded. Write your answer clearly on the line in front of the question.

Use the chart to the right to answer questions 1-4. Answers may be repeated.

Name_____

		1									
1	Represe	ents an atom that is	chemically unrea	ctive	(A) 1s	_2s_ 1	_				
2	Repres	(B) $1s \downarrow \uparrow 2s \downarrow \uparrow$									
3	Repres	ents an atom that h	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
4	Represents an atom of a transition metal.										
Questi	on 5-6 refer to the	following element	s								
Questi	(A) Lithium	(B) Nickel	(C) Bromine	(D) Uraniu	ım (E) Fluo	orine					
5	Is a gas in its standard state at 298 K										
6	Reacts with water to form a strong base										
7	7 What mass of Au is produced when 0.0500 mol of Au ₂ S ₃ is reduced completely with excess H ₂ ? (A) 9.85 g (B) 19.7 g (C) 24.5 g (D) 39.4 g (E) 48.9 g										
8.	When	a solution of sodiu	m chloride is vapo	orized in a fla	ame, the color o	of the fla	ame is				
			(C) green								
11 If 1 mc	iately? (A) Dry the affe (B) Sprinkle the (C) Flush the af (D) Flush the aff (E) Flush the aff (E) Flush the aff When ient for $O_2(g)$ is? (A) 6 le of O_2 oxidizes in (A) 2 A 1.0 r of moles of AgN (A) 0.10 mol	(B) 7 (B) 7 Fe(O Fe(OH) ₂ according (B) 3 liter sample of an O ₃ that must be ad (B) 0.20 mol	er towels powdered Na ₂ SO ater and then with ater and then with ater and then with $I_{12}O_4S(s) + O_2(g$ re is balanced and (C) 12 $PH)_2 + O_2 + Hg to the reaction rep(C) 4aqueous solution ofded to the solution(C) 0.30 mol$	$A_4(s)$ a dilute NaC a dilute NaF a dilute vine g)> C all coefficien (D) 14 $I_2O> F$ presented ab (D) 5 contains 0.10 n in order to (D) 0.40 m	DH solution ICO_3 solution gar solution $O_2(g) + \dots SO$ nts are reduced (E) 28 $e(OH)_3$ sove, how many (E) 6 D mol of NaCl a precipitate all c sol (E) 0.60	$p_2(g) + .$ to their y moles and 0.10 of the Cl	H ₂ O(g) lowest wh of Fe(OH)) mol of Ca	ole-num 3 can be aCl2. Wh	ber terms, formed?	, the	
13		onization energies			table to the	Ioniza	ation Energ	gies for e	lement X	(kJ mol ⁻¹)	
right. C	On the basis of the data, eleme (A) Na (B) Mg		t X is most likely to be: (C) Al	(D) Si	(E) P	First	Second	Third	Fourth	Five	
		(D) Mg			(L) I	580	1815	2740	11600	14800	
14	(A) accepts a pr	lecule or an ion is oton from water ir of electrons to fo (E) has resona		(H (I	B) accepts a paiD) donates a pro			orm a boi	ıd		

 \dots Li₃N(s) + \dots H₂O(l) ---> \dots Li⁺ (aq) + \dots OH⁻(aq) + \dots NH₃(g)

	When the equation a	above is balanced	and all coefficient	s reduced to lowest whole number terms, the coefficient for
OH ⁻ (aq) is (A) 1	(B) 2	(C) 3	(D) 4	(E) 6
(A) Titr	build be the best proced ration of the solution w ermination of the boili	ure to determine t with standard acid ng point of the so	to molarity of the s (B	in 1,000 g of water to make a 1.0-molal solution. Which of solution? (Assume no additional information is available.)) Measurement of the pH with a pH meter) Measurement of the total volume of the solution solution
oxygen is added (A) The	at constant temperature volume of the gas inc average speed of the	re? prease. gas molecules ren	nains the same.	(B) The pressure of the gas decreases.(D) The total number of gas molecules remains the same.
	by mass and 37.4 perce	ent Cl by mass. W	hat is the empiric	orine gas, the product of the reaction is found to contain al formula for this compound? (E) Hf ₂ Cl ₃
19(A) It re	emains constant.	(B) It increa	Imber increases frases only.(C) It decreases, the	om 11 to 17, what happens to the atomic radius?) It increases, then decreases. a increases.
were bombarded (A) Ato	with alpha particles? which have equal number atrons and protons in a	rs of positive and toms have nearly	negative charges. equal mass.	 results of Rutherford's experiments in which gold atoms (B) Electrons in atoms are arranged in shells. (D) Neutrons are at the center of an atom. rated in a small region.
		alanced equation a 0 mol of H ₂ SO ₄ ?		$_{4} + K_{2}SO_{4} + 8 H_{2}O$ moles of HI would be necessary to produce 2.5 mol of I ₂ , (E) 2.5
because on the n (A) equ (B) equ (C) equ (D) wat	nountaintop the ilibrium water vapor p ilibrium water vapor p ilibrium water vapor p	ressure is higher d ressure is lower d ressure equals the gher average kine	due to the higher at ue to the higher at atmospheric pres tic energy due to	
23. OH ⁻ (aq) in the re (A) 0.10	esulting solution? (Ass	ume that the volu	mes are additive.	L of 0.15 M Ba(OH) ₂ . What is the molar concentration of (E) 0.55 M
24 pressure in the 1 (A) 3 at	A 0.03 mol sample .0 L flask measured at		ecomposes comple o which of the fol	•
25 produced liquid (A) -1,2	For the reaction of water $H_2O(l)$, rather the	an water vapor H	tted above, ΔH is - ₂ O(g)? (ΔH for the	1,323 kJ. What is the value of ΔH if the combustion e phase change H ₂ O(l) → H ₂ O(g) is +44 kJ mol ⁻¹ .) kJ (E) -1,411 kJ