| Name | | _ AP Chemistr | y | October 29, 2010 | |--|--|--|---|--| | AP Chemistry Exam
Part I: 39 Questions
Bubble the correct a | , 40 minutes, Multi | - | | | | and select from t a. to th b. to th c. neith d. in bo | $ Arr$ 2N ₂ O(g) Δ H = -163
the following choices:
e right
e left | kJ | | | | In which direction will | I the system move in order
the system move in order
the system move in order
the system move in order
the system move in order | er to reestablish equi
er to reestablish equi
er to reestablish equi
er to reestablish equi | librium if the volulibrium if O_2 is addibrium if a catalystibrium if N_2O is r | me is increased? ded? st is added? emoved? | | 7. In expanding from 5.0 1 liter atm). The change a. 50.66 J | | is: | atmospheres, a gas
d. 505.64 J | absorbs 505.64 joules of energy (101.32 J = e. 606.00 J | | mass of the gas? The gas
a. 0.0218 gram/r | constant, R, is 0.0821 L | atm mol ⁻¹ K ⁻¹).
2 grams/mole | _ | s a volume of 2.00 liters. What is the molar grams/mole | | | 285.8 kJ / mole
393.3 kJ / mole | , ΔH _f ° CH ₄ (g), as cal
5.8 kJ/mole | | | | | | .% of the chlorine m | | the chlorine molecules begin to dissociate e when equilibrium has been achieved? e. 1.0 | | 11. A sample of 0.1973 r
15° C and the same volum
a. 0.0876 atm | ne? | onfined at 37° C and 01 atm d. 0.233 | | What would be the pressure of this sample at atm | | reaction above was allow found to be 2 atm. What | ontained only $H_2(g)$ with ed to come to equilibrium is the value of the equilibrium | n at a temperature of prium constant K_p , for | 700 K. At equilibrathe reaction? | with a partial pressure of 4 atm. The prium, the partial pressure due to CO(g) was | | a. $\frac{1}{24}$ | b. $\frac{1}{6}$ c. $\frac{1}{4}$ | | d. $\frac{1}{3}$ | e. $\frac{1}{2}$ | | 13. The density of a gas i | | its
mperature | d. kinetic energy | e. molecular velocity | | | | | | A decomposes according to the following rmine the equilibrium concentration of gas A. e. none of these | | 15. At 25 °C, a sample of of the following gases effu a. O ₂ (molar mass | ses at approxima | tely double that ra | ate? | | per minute. Under the same conditions, which c. CO ₂ (molar mass 44 grams) | |--|---|---------------------|------------------------------------|----------------------|---| | | d. Cl ₂ (molar ma | | | | nass 16 grams) | | 16. At constant temperatur | re and pressure, t | he heats of forma | | | $\frac{d C_2 H_6(g)}{d C_2 H_6(g)}$ are as follows: | | | | ecies | | (kJ/mole) | | | | $H_2O(g)$ $CO_2(g)$ | | | -251
-393 | | | | | $H_6(g)$ | | -393
-84 | | | If ΔH values are negative f vapor (temperature and pre | for exothermic rea | actions, what is th | l
ne ΔH for 1 mo | | as to oxidize to carbon dioxide gas and water | | a8730 kJ/mole | | b2910 kJ/mol | | c145
2910 kJ/mole | 55 kJ/mole | | | | | | | ollowing exothermic process at $P = 1$ atm and | | $T = 370 \text{ K? } H_2O(g) \rightarrow H_2O(g)$ | D(1) | - | | | | | a. q is negative, vd. q is positive, w | | | nd w are negati
nd w are both z | | c. q and w are both positive | | 18. Calculate the standard of $2C_2H_2(g) + 5O_2(g)$ $C(s) + O_2(g) \rightleftharpoons H_2(g) + \frac{1}{2}O_2(g) = 0$ | $(g) \rightleftharpoons 4CO_2(g) + CO_2(g)$ | | –2243.6 kJ
–393.5 kJ | | | | a. 49.0 | b. 98.0 | c. 1121.8 | d. 1 | 564.3 | e. 147.0 | | 19. A sealed isothermal container initially contained 2 moles of CO gas and 3 moles of H₂ gas. The following reversible reaction occurred: CO(g) + 2H₂(g) ⇒ CH₃OH(g) At equilibrium, there was 1 mole of CH₃OH in the container. What was the total number of moles of gas present in the container at equilibrium? a. 1 b. 2 c. 3 d. 4 e. 5 | | | | | | | | g would express | the approximate d | lensity of carbo | on dioxide ga | as at 0°C and 1.00 atm pressure (in grams per | | liter)? a. 2 g/L | b. 4 g/L | c. 6 g/ | L d. S | 8 g/L | e. none of the above | | 21. In which of the following reactions does $\Delta H^{\circ}_{f} = \Delta H^{\circ}_{rxn}$? a. $O(g) + O_{2}(g) \rightarrow O_{3}(g)$ b. $H_{2}(g) + F_{2}(s) \rightarrow 2HF(g)$ c. $H_{2}(g) + FeO(s) \rightarrow H_{2}O(1) + Fe(s)$ d. $C(diamond) + O_{2} \rightarrow CO_{2}(g)$ e. none of the reactions | | | | | | | 22. For which reaction does $K_p = K_c$?
a. $2C(s) + O_2(g) \rightleftharpoons 2CO(g)$ b. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
c. $2H_2(g) + O_2(g) \rightleftharpoons 2H_2O(g)$ d. $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
e. $2S(s) + 3O_2(g) \rightleftharpoons 2SO_3(g)$ | | | | | | | 23. If the absolute temperature of a sample of gas is increased by a factor of 1.5, by what ratio does the average molecular speed of its molecules increase? | | | | | | | | b. 1.5 | c. 2.2 | d. 3 | 5.0 | e. 0.75 | | 24. The density of an unknown gas is 4.20 grams per liter at 3.00 atmospheres pressure and 127 °C. What is the molecular weight of | | | | | | | this gas? (R = 0.0821 liter-a
a. 14.6 | atm / mole-K)
b. 46.0 | c. 88.0 | d. 9 | 94.1 | e. 138 | | 25. A hydrocarbon gas with an empirical formula CH ₂ has a density of 1.88 grams per liter at 0 °C and 1.00 atmosphere. A possible formula for the hydrocarbon is | | | | | | | formula for the hydrocarbo
a. CH ₂ | b. C ₂ H ₄ | $c. C_3H_6$ | d. C | C_4H_8 | e. C ₅ H ₁₀ | | 26. The standard enthalpy of formation for NH ₃ (g) is -46.1 kJ.mol ⁻¹ . Calculate Δ H° for the reaction: | | | | | | | $2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$
a92.2 kJ | (g)
b46.1 kJ | c. 46.1 kJ | d. 9 | 92.2 kJ | e. 23.0 kJ | | | | | | | | | 27. Oxygen, which is 16 times as dense as hydrogen, diffuses: a. 1/16 times as fast. b. 1/4 times as fast. c. 4 times as fast. d. 16 times as fast e. equally as fast as hydrogen. | |---| | 28. A gaseous mixture containing 7.0 moles of nitrogen, 2.5 moles of oxygen, and 0.50 mole of helium exerts a total pressure of 0.90 atmosphere. What is the partial pressure of the nitrogen? a. 6.3 atm b. 0.90 atm c. 0.63 atm d. 0.27 atm e. 0.13 atm | | a. 6.3 atm b. 0.90 atm c. 0.63 atm d. 0.27 atm e. 0.13 atm 29. A sample of 5.0 grams of an ideal gas at 121 °C and 1.4 atmosphere pressure has a volume of 1.5 liters. Which of the following | | expressions is correct for the molar mass of the gas? The ideal gas constant, R, is 0.08 (L-atm) / (mole K). a. $[(0.08)(400)]$ / $[(5.0)(1.4)(1.5)]$ b. $[(1.4)(1.5)]$ / $[(5.0)(0.08)(400)]$ c. $[(0.08)(1.4)(1.5)]$ / $[(5.0)(0.08)(1.5)]$ / $[(5.0)(0.08)(400)]$ / $[(1.4)(1.5)]$ e. $[(5.0)(0.08)(1.5)]$ / $[(1.4)(400)]$ | | 30. A piece of metal weighing 418.6 grams was put into a boiling water bath. After 10 minutes, the metal was immediately placed in 250.0 grams of water at 40.0°C. The maximum temperature that the system reached was 50.0 °C. What is the specific heat of the metal? The specific heat of the water is 4.186 J/g°C. a. 8.00 J/g°C b. 4.00 J/g°C c. 2.00 J/g°C d. 1.00 J/g°C e. 0.500 J/g°C | | | | 31. Two metals of equal mass with different heat capacities are subjected to the same amount of heat. Which undergoes the largest change in temperature? | | a. The metal with the higher heat capacity b. The metal with the lower heat capacity. c. Both undergo the same change in temperature d. You need to know the initial temperatures of the metals. e. You need to know which metals you have. | | 32. For a certain reaction at 298K, the value of K is 1.2 x 10 ⁻¹ . At 323K the value of K is 3.4 x 10 ⁻³ . This means that the reaction is: a. endothermic. b. exothermic. c. never favorable. d. More information is needed. e. None of these. | | 33. The equilibrium constant for the reaction: $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$ is 26 at 50°C. What is the K_c for $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$ at the same temperature?
a. 0.34 b. 1.8 x 10 ⁴ c. 0.038 d. 5.7 x 10 ⁻⁵ e. 2.9 | | 34. What is the heat capacity of a substance if it requires 1973 J to change the temperature of 55.0 g mercury from 15.0°C to 60.0°C? a. 313 J/g °C b. 6.92 x 10 ⁻³ J/g °C c. 0.797 J/g °C d. 0.445 J/g °C e. 1.39 J/g °C | | 35. Given these two standard enthalpies of formation: Reaction 1: $SO_2 \rightleftharpoons S(s) + O_2(g)(g)$ $\Delta H^{\circ} = 295 \text{ kJ/mole}$ | | Reaction 2: $S(s) + \frac{3}{2}O_2(g) \rightleftharpoons SO_3(g)$ $\Delta H^{\circ} = -395 \text{ kJ/mole}$ | | What is the heat of reaction for $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$ under the same conditions?
a. 1380 kJ/mole b. -200 kJ/mole c. 100 kJ/mole d. 200 kJ/mole e. -100 kJ/mole | | 36. 73.0 grams of $O_2(g)$ and 73.0 grams of $He(g)$ are in separate containers of equal volume. Both gases are at 197°C. Which of the following statements is true? a. Both gases would have the same pressure. b. The average kinetic energy of the O_2 molecules is greater than that of the He molecules. c. The pressure of the $He(g)$ would be greater than that of the $O_2(g)$. d. There are equal numbers of He molecules and O_2 molecules. e. The average kinetic energy of the He molecules is greater than that of the O_2 molecules. | | 37. Which one of the following is NOT an assumption of the kinetic theory of gases? a. Gas particles don't attract each other. b. Gas particles are in constant motion. c. Gas particles are negligibly small. d. Gas particles undergo elastic collisions. e. Gas particles undergo a decrease in kinetic energy when passed from a region of high pressure to a region of low pressure. | 38. Sulfur trioxide gas dissociates into sulfur dioxide gas and oxygen gas at 1250°C. In an experiment 3.60 moles of sulfur trioxide were placed into an evacuated 3.0 L flask. The concentration of sulfur dioxide gas measured at equilibrium was found to be 0.20 M. What is the equilibrium constant K_c , for the reaction? a. $$8.0 \times 10^{-3}$$ b. $$4.0 \times 10^{-3}$$ 39. Given the following information: Reaction 1: $$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1)$$ $$\Delta H^{\circ} = -286 \text{ kJ}$$ Reaction 2: $$C(s) + O_2(g) \rightarrow CO_2(g)$$ $$\Delta H^{\circ} = -394 \text{ kJ}$$ Reaction 3: $$2CO_2(g) + H_2O(1) \rightarrow C_2H_2(g) + \frac{5}{2} O_2(g)$$ $$\Delta H^{\circ} = 1300 \text{ kJ}$$ Find ΔH° for the reaction: $C_2H_2(g) \rightarrow 2C(s) + H_2(g)$ a. -226 kJ b. -113 kJ c. 113 k | Name | AP Chemistry | October 29, 2010 | |--|--|--| | AP Chemistry Exam II | | | | Part II: Essays. Show ALL work below. Wo | ork should be done in a clear and order | ly fashion and in pen. | | #1. 2003 - #2 (edited) | | | | A rigid 11.06 L cylinder contains 19.73 g of Cl ₂ | | | | (a) Calculate the total pressure, in atm, of the ga(b) The temperature of the gas mixture in the cy | | ach of the following | | (i) The mole fraction of $F_2(g)$ in the cy | linder | ich of the following. | | (ii) The partial pressure, in atm, of F ₂ (g(c) If the chlorine molecules travel at a rate of 3 | g) in the cylinder
61 m/s at 370 K, at what rate will the flu | orine molecules travel? | | A different rigid 3.70 L cylinder contains 0.973 | mol of NO(g) at 298 K. A 0.973 mol san | nple of $O_2(g)$ is added to the cylinder, where a | | reaction occurs to produce $NO_2(g)$.
(d) Write the balanced equation for the reaction | | | | (e) Calculate the total pressure, in atm, in the cy | linder at 298 K after the reaction is comp | olete. | ## #2. 1995 - #2 (edited) Butane, C₄H₁₀, is a hydrocarbon that is commonly used as fuel for in lighters. - (a) Write a balanced equation for the complete combustion of butane gas, which yields $\mathrm{CO}_2(g)$ and $\mathrm{H}_2\mathrm{O}(l)$. - (b) Calculate the volume of air at 73°C and 1.00 atmospheres that is needed to burn completely 37.0 grams of butane. Assume that air is 21.0 percent O₂ by volume. - (c) The heat of combustion of butane is -2,881.9 kJ/mol. Calculate the heat of formation, ΔH°_{f} , of butane given that ΔH°_{f} of $H_{2}O(l)$ = -285.3 kJ/mol and ΔH°_{f} of $CO_{2}(g) = -393.5$ kJ/mol. | (d) If the enthalpy of vaporization for H₂O(I) is 44.0 kJ/mol, what is ΔH° for the combustion reaction above if H₂O(g) is formed instead of H₂O(l)? (e) Assuming that all of the heat evolved in burning 73.0 grams of butane is transferred to 11.06 kilograms of water (specific heat = 4.184 J/g · K), calculate the increase in temperature of the water. | |---| Answer the following questions regarding the decomposition of arsenic pentafluoride, AsF₅(g). (a) A 60.55 g sample of AsF₅(g) is introduced into an evacuated 5.50 L container at 176°C. (i) What is the initial molar concentration of AsF₅(g) in the container? (ii) What is the initial pressure, in atmospheres, of the AsF₅(g) in the container? At 176°C, AsF₅(g) decomposes into AsF₃(g) and F₂(g) according to the following chemical equation. | |---| #3. 2008B - #1 (edited) | #4. | 1995 - #1 | (edited) | |------------|-----------|----------| | | | | $$H_2O(g) + CO(g) \rightleftharpoons H_2(g) + CO_2(g)$$ When H₂O(g) is mixed with CO(g) at 1,973K, equilibrium is achieved according to the equation above. In one experiment, the following equilibrium concentrations were measured. $$[H_2O] = [CO] = 0.45 \text{ mol/L}$$ $$[H_2] = 0.30 \text{ mol/L}$$ $[CO_2] = 0.40 \text{ mol/L}$ - (a) What is the mole fraction of CO₂(g) in the equilibrium mixture? - (b) Using the equilibrium concentrations given above, calculate the value of K_c , the equilibrium constant for the reaction. - (c) Determine K_p , in terms of K_c for this system. - (d) When the system is heated from 1,973 K to a higher temperature, 37.0 percent of the CO(g) is converted to $CO_2(g)$. Calculate the value of K_c at this higher temperature. - (e) In a different experiment, 0.73 mole of H₂O(g) is mixed with 0.73 mole of CO(g) in a 3.0-liter reaction vessel at 1,973 K. Calculate the equilibrium concentration, in moles per liter, of H₂(g) at this temperature.