Name	AP Chem	//

Chapter 5 Homework

Answer each of the following questions clearly. Show all work when necessary. You will have 25 minutes to complete this quiz. 18 points.

- 1. Calculate the pressure exerted by 56.0 grams of N_2 in a 20.00 L container at -85°C.
 - a. Using the ideal gas law. (2 pts)
 - b. Using the van der Waals equation (a = 1.39; b = 0.0391) (2 pts)
- c. Many gases deviate from "ideal" behavior at low temperatures and high pressures. As a result you should use your pressure result from part b. If the volume is held constant, and the temperature rises to -5.0° C, what would be the pressure exerted by the nitrogen gas? (1 pt)

2. Air bags are activated when a severe impact causes a steel ball to compress a spring and electrically ignite a detonator cap. This causes sodium azide (NaN_3) to decompose explosively according to the following reaction:

 $2\text{NaN}_3(s) \rightarrow 2\text{Na}(s) + 3\text{N}_2(g)$

- a. What mass of $NaN_3(s)$ must be reacted to inflate an air bag to 70.0 L at a pressure of 733 mm Hg and a temperature of -35.00 °C? (2 pts)
 - b. What is the density of nitrogen gas at this temperature? (1 pt)
 - c. How many molecules of nitrogen are present in the volume of gases calculated in part A? (1 pt)
 - d. What is the mass of nitrogen actually produced at the above conditions? (1 pt)

- 3. A mixture of oxygen, O_2 , and nitrogen, N_2 has a total pressure of 745 mm Hg at 15°C and contains 8.20 grams of each substance.
 - a. Calculate the partial pressure of each gas in the mixture. (2 pts)
 - b. Calculate the root mean square velocity of each gas at 15°C. (2 pts)
 - c. Determine the density of each gas at the above conditions. (2 pts)
 - d. Determine the volume of each gas at the above conditions. (2 pts)
 - e. If it is determined that it takes oxygen, (O_2) 41 seconds to completely effuse. How long does it take nitrogen, (N_2) at the above conditions? (1 pt)

4. One of the chemical controversies of the 19^{th} century concerned the element beryllium (Be). Berzelius originally claimed that beryllium was a trivalent element (Be³⁺) and it gave an oxide with the formula Be₂O₃. This resulted in a calculated atomic mass of 13.5 for beryllium. In formulating his periodic table, Mendeleev proposed that beryllium was divalent (Be²⁺) and it gave an oxide with the formula BeO. This assumption gives an atomic mass of 9.0. In 1894 A. Combes (*Comptes Rendus* 1894, p. 1221) reacted beryllium with the anion $C_5H_7O_2^-$ and measured the density of the gaseous product. Combes's data for two different experiments are as follows:

	Test 1	Test 2
Mass	0.2022 g	0.2224 g
Volume	22.6 cm^3	26.0 cm^3
Temperature	13°C	17°C
Pressure	765.2 mm Hg	764.6 mm Hg

If beryllium is a divalent metal, the molecular formula of the product will be $Be(C_5H_7O_2)_2$; if it is trivalent, the formula will be $Be(C_5H_7O_2)_3$. Show how Combes's data help to confirm that beryllium is a divalent metal. You must show calculations and give a brief statement explaining your answer. (3 pts)

Gas Law Formulas		
$\mathbf{P}_{\text{total}} = \mathbf{P}_{1} + \mathbf{P}_{2} + \mathbf{P}_{3}$	Dalton's Law of Partial Pressure	
$\mathbf{X}_{\scriptscriptstyle 1} = \mathbf{n}_{\scriptscriptstyle 1}/\mathbf{n}_{\rm total} = \mathbf{P}_{\scriptscriptstyle 1}/\mathbf{P}_{\rm total}$	Mole Fraction	
$\mathbf{P_1V_1} = \mathbf{P_2V_2}$	Boyle's Law	
$\mathbf{V}_{\scriptscriptstyle 1}/\mathbf{T}_{\scriptscriptstyle 1}=\mathbf{V}_{\scriptscriptstyle 2}/\mathbf{T}_{\scriptscriptstyle 2}$	Charles' Law	
$\mathbf{V}_{\scriptscriptstyle 1}/\mathbf{n}_{\scriptscriptstyle 1}=\mathbf{V}_{\scriptscriptstyle 2}/\mathbf{n}_{\scriptscriptstyle 2}$	Avogadro's Law	
$\mathbf{P}_{\scriptscriptstyle 1}/\mathbf{T}_{\scriptscriptstyle 1}=\mathbf{P}_{\scriptscriptstyle 2}/\mathbf{T}_{\scriptscriptstyle 2}$	Gay-Lussac's Law	
$P_1V_1/T_1 = P_2V_2/T_2$	Combined Gas Law	
$\frac{\text{Rate}_{\mathbf{B}}}{\text{Rate}_{\mathbf{A}}} = \frac{-\sqrt{\mathbf{M}\mathbf{M}_{\mathbf{A}}}}{-\sqrt{\mathbf{M}\mathbf{M}_{\mathbf{B}}}}$	Graham's Law	
PV = nRT R = 8.3145 L kPa/mol K or R= 0.08206 L atm/mol K	Ideal Gas Law	
(mm) P = dRT mm = molar mass d = density R= 0.08206 L atm/mol K	Gas Density/Molar Mass	
$egin{aligned} oldsymbol{v}_{rms} &= \sqrt{(3 ext{RT} / ext{M})} \ oldsymbol{ ext{M}} &= ext{molar mass in kg} / ext{mol} \ oldsymbol{ ext{R}} &= 8.3145 ext{ J/mol K} \end{aligned}$	Root Mean Square Velocity	
$[P_{obs} + a(n/V)^2] \times (V - nb) = nRT$	van der Waals Equation	
Standard Atmospheric Pressure: 1 atm = 760 torr = 760 mm Hg = 101.3 kPa = 14.7 psi		