Final Review Honor 2015

1	Which separatio a. decanting			parate the colors in a c. distillation	mixture? d. chromatography				
2 Some bottles of colorless liquids were being labeled when the technicians accidentally mixed them up and lost track of their contents. A 24.8 mL sample withdrawn from one bottle weighed 22.3 g. Which of the following is the correct identity of the unknown liquid?									
	a. acetone, d=0 c. chloroform, d			b. benzene, d. carbon te	0.899 g/mL trachloride, d=1.595 g/mL				
3	The proper scienal 0.565 x 10 ¹¹	ntific notation for b. 5.65	56,500,000,000 x 10 ¹⁰	is — c. 5.65 x 10 ⁻¹⁰	d. 565 x 10 ⁻⁸				
4 c. endo	Deposition is an a. exothermic clothermic chemica	example of an: nemical change I change	d. exo	b. endothermic phys hermic physical chang	ical change ge				
5 A student is given a container of potassium nitrate crystals. In order to determine the exact mass of the potassium nitrate using a balance, he must know the — a. mass of the filled container and the chemical formula for potassium nitrate b. mass of the filled container and the density of potassium nitrate c. volume of the filled container and the volume of the potassium nitrate d. mass of the empty container and the mass of the filled container									
following sets of	One of the ou of four quantum n (B) 5, 1, 1, ½	umbers?		-	ate can be described by which of the				
	Which type of (B) gamma			line when passed thro ton (E) positron	ough an electric field?				
penetrate a pie	ce of lead?				t order of increasing ability to				
	es < alpha partic	les < gamma ray		ha particles < beta par a particles < gamma r a particles					
9 Correct statements about alpha particles include which of the following? I. They have a mass number of 4 and a charge of +2. II. They are more penetrating than beta particles. III. They are helium nuclei.									
	(B) III only		(D) I and III	(E) II and III					
10. (A) 6 days	If 87.5 perce (B) 8 days	nt of a sample o (C) 12 days	f pure ¹³¹ l decay (D) 14 days	s in 24 days, what is t (E) 21 days	he half-life of ¹³¹ I?				
Neutron bomba following?		m can induce th	e following react	•	e. Nuclide X is which of the				
(A) $^{92}_{35}$ Br	(B) ⁹⁴ ₃₅ Br	(C) $^{91}_{37}$ Rb	(D) $^{92}_{37}$ Rb	(E) ⁹⁴ ₃₇ Rb					
12 Experiments performed to reveal the structure of atoms led scientists to conclude that an atom's (A) positive charge is evenly distributed throughout its volume (B) negative charge is mainly concentrated in its nucleus (C) mass is evenly distributed throughout its volume (D) volume is mainly unoccupied									

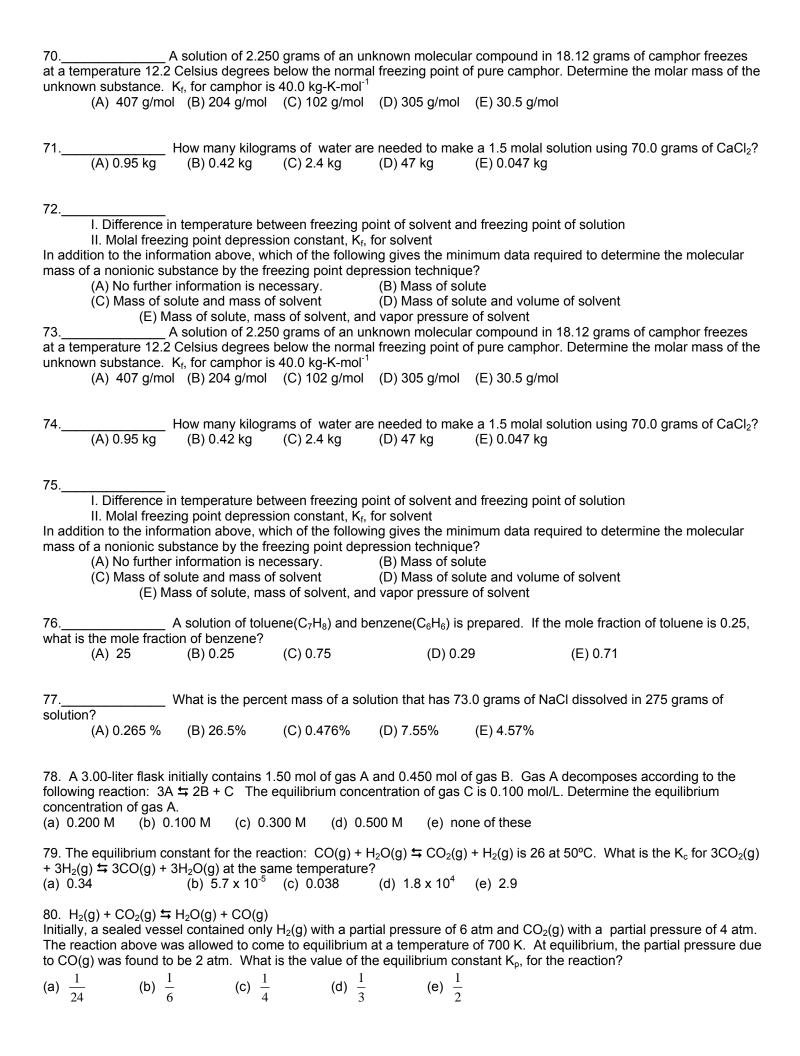
(E) positive and negative charges are concentrated in the nucleus

13 (A) 6	_ What is the ma (B) 8	aximum numbei (C) 10	r of electrons tha (D) 18	t occupy the n = (E) 32	3 level?
	_ Which set of qu (B) 2, 1, −1, −½				by the rules of quantum mechanics?
15. (A) 6	_ How many unp (B) 5		are in an iron ato (D) 2		state?
	_An electron in a (B) 1s to 2s				om energy level:
17	Which of the f (A) 1s ² 2s ² 2p ⁶ 3	following repres s ² 3p ⁶ 3d ⁴ (D) 1s ² 2s ² 2p ⁶	ents the ground (B) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ²	state electron co 3s ² 3p ⁶ 3d ⁵ 4s ² (E) 1s ²	onfiguration for the Mn ³⁺ ion? (C) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ² 4s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ¹
18	The electron (A) S ²⁻	configuration: 1 (B) Ca ²⁺	$s^2 2s^2 2p^6 3s^2 3p^6$	o ⁶ corresponds to (D) K ⁺	the electron configuration of: (E) all of these
19	Which of the f (A) sodium				nization energy? (E) magnesium
20	Which of the f (A) sodium				(E) magnesium
21			the elements liste (B) F, Cl, Br, I P		reasing ionization energy? (C) O, N, C, B
		Ionizatio	on Energies for el	ement X (kJ mol	-1)
			Second Third	Fourth Five	<u> </u>
		580	1815 2740	11600 1480	00
		energies for el	ement X are liste	ed in the table ab	pove. On the basis of the data, element X
is most likely to		(B) Mg	(C) Al	(D) Si	(E) P
23			(B) N, O, S, CI		reasing Electronegativity? (C) N, P, As, Sb K, Na, Ca
	In the periodic	table, as the a	tomic number inc	creases from 11	to 17, what happens to the atomic
radius?	(A) It remains co	onstant. (D) It decrease	(B) It increases es only.		(C) It increases, then decreases. ecreases, then increases.
25			nts has one vale (C) chromium		(E) zinc
26I. Mg	_Which of the fol II. CuC		ces can conduct III. Cu	electricity at roo	m temperature?
(A) II only	(B) I and II only	(C) I and III on	ly	(D) II and III on	lly (E) I, II, and III
27. (A) +2	_ What is the oxi (B) +3	dation number (C) -3	of phosphorus in (D) +4	copper(II) phosp	ohite? (E) +5
I. They	Which of the for are most crystary only conduct el	lline solids at ro	om temperature.		

III. They have free moving electrons.										
(A) I only	(B) I and II only	(C) I an	ıd III only	/		(D) II and III o	nly	(E) I,	II, and III
endothermic? I. Step II. Step	_When LiF is for 1: Sublimation of 2: Ionization of p 4: Formation	f solid litl lithium at	hium. Li tom. Li(i(s) → L g) → Li	i(g) (g) + e		steps. Wh	ch of the	followi	ng steps is NOT
(A) II only	(B) II only	(C) I an	id II only		(D) II a	nd l	II only	(E) III c	only	
30. (A) LiCl	_ Which of the fo (B) LiF	ollowing v (C) Na		ely hav	e the hig (D) Na		t melting po	int? (E) KF		
31. (A) +3	_ What is the ox (B) -2		umber o	f sulfur	in alumir (D) +4	num	sulfate?	(E) +6		
32. (A) +2	_What is the ox (B) +3			f manga	anese in (D) +6	Mn	O ₂ ?	(E) +7		
33. (A) +3	_What is the ox (B) +2		umber o	f ruthen	ium in R (D) +4	luO ₃	₃ ?	(E) +8		
34	_ Which of the f a. H-O	ollowing	is an ior b. P-F	nic bond	l?	C.	C-O		d. O-	K
35	_ Which of the fo a. dispersion fo									iodine is a solid? valent bonds
36.	_ Which of the f a. H₂O	ollowing	molecul b. H ₂	es woul	d have t		nost hydrog CH₄		ng? d. HC	CN
37	_ Which of the f a. H_2	ollowing	molecul b. l ₂	es has	the stron		t dispersion Br ₂	forces?	d. F ₂	
38	_ Which of the f a. sulfur dichlo		compou b. nitra		es not ha		a resonance sulfur dioxi		e?	d. carbonate ion
39	_ Which of the f a. carbon	ollowing	element b. nitro		not follo		e octet rule' hydrogen		d. iod	line
40	_ Which of the f a. single bond					C.	triple bond	d. all b	onds a	re the same length
41	Which of the for a. polar single c. polar double	covalent	bond	b. non	-polar si	ngle	covalent b		omine i	in BrCl?
42	$_{\rm }$ Which of the f a. $_{\rm }$ H $_{\rm }$	ollowing	molecul b. F ₂	es has	the stron		t bonds bet O ₂	ween ato	ms? d. N_2	
formula of this	_ A compound c compound? (B) KTe ₂ O							mol of O.	What i	s the simplest
44. (A) 1.2 x 10 ²³	_ How many car (B) 3.0 x 10 ²³	bon aton (C) 6.0	ns are co x 10 ²³	ontained (D) 1.2	d in 2.8 g x 10 ²⁴	gran (E	ns of C ₂ H ₄ ?) 6.0 x 10 ²⁴			

45. _____ What is the empirical formula of a hydrocarbon that is 10% hydrogen by mass?

(A) CH ₃	(B) C_2H_5	(C) C_3H_4	(D) C ₄ H ₉	(E) C ₉ H ₁₀			
46. (A) 25.0 x 10 ²³	_ How many gol (B) 2.96 x 10 ²⁷	d atoms are ther (C) 7.64 x 10 ²²	re in 25.0 grams (D) 560.	of gold? (E) none of the above	е		
47. (A) 69.9%	_ What is the per (B) 77.7%	rcentage of oxyg (C) 30.1%	en in iron(III) oxi (D) 22.3%	de? (E) none of the above	е		
				r nitrate(AgNO₃)? (E) none of the above	•		
49. (A) 1.95 x 10 ²³	_ How many sulf (B) 3.90 x 10 ²³	ate ions are ther (C) 5.86 x 10 ²³	re in 111 grams o (D) 2.98 x 10 ²⁴	of aluminum sulfate? (E) none of the above	•		
50. (A) SrPO ₃	What is the for $(B) Sr_3(PO_3)_2$	mula of a compo (C) Sr ₃ (PO ₄) ₂	ound that is 62.5 (D) Sr ₃ PO ₄	% strontium, 14.7 % pt (E) $Sr_3(PO_2)_2$	hosphorus & 22.8% oxygen?		
			of diatomic oxyge (D) 90.	en at STP? 0 grams (E) none of tl	ne above		
52. (A) 51%			y mass) in calciu (C) 68%	m fluoride is: (D) 33%	(E) 81%		
53	water. Calcula	te her percent yi	eld?	ns of methane Lisa was d. 87.5% e. no	s able to produce 63.0 grams of one of the above		
54	a. N₂	2NH₃ - Given 28 b. H ₂	.1 grams of N ₂ a c. NH ₃	nd 30.0 liters of H_2 , whd. both H_2 & N_2 e. ca	nich is your limiting reagent? In't be determined		
55		of S, what is my	m reacts with sultimiting reagent? c. Al ₂ S ₃	?	m sulfide. If I have 81 grams of Al		
56		ers of oxygen gas	s at STP are pro		otassium chloride and oxygen gas. ns of potassium chlorate? one of the above		
57.	If the theore	tical value is 4.7	5 grams and in th	ne lab you measure 3.2	23 grams, what is the percent		
yield? a. 1.52 %	b. 1.47 %	c. 68.0 %	d. 87.4 %	e. none of the above			
58. 2AI(s) + 3CI ₂ (g) \rightarrow 2AICI ₃ (s) The reaction above is not spontaneous at standard conditions, but becomes spontaneous as the temperature decreases towards absolute zero. Which of the following is true at standard conditions? (A) $\triangle S$ and $\triangle H$ are both negative (B) $\triangle S$ and $\triangle H$ are both positive (C) $\triangle S$ is negative and $\triangle H$ is positive (D) $\triangle S$ is positive and $\triangle H$ is negative (E) $\triangle S$ and $\triangle H$ are both equal to zero							
59 $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$							
Based on the in	itormation in the	table below, wha	Averag	e above reaction? e Bond Energy			
		H-H		(kJ/mol) 432			
		0=0		495			
		О-Н		467			
(A) +4	60 kJ (B) +42	25 kJ (C) +50	9 kJ	(D) -509 kJ	(E) -460 kJ		


60.______ Based on the information given below, what is the ΔH for the following reaction:

 $C_2H_2(g) + 5/2 O_2 \rightarrow 2CO_2(g) + H_2O$

	Reaction	ΔH
	$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta H = -390 \text{ kJ/mol}$
	$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(I)$	$\Delta H = -290 \text{ kJ/mol}$
	$2C(s) + H_2(g) \rightarrow C_2H_2(g)$	$\Delta H = +230 \text{ kJ/mol}$
(A) -1300 kJ	(B) -1070 kJ (C) -840 kJ	(D)-780 kJ

(E) -680 kJ

61	· · · · · · · · · · · · · · · · · · ·	I.	Γhe enthalpy v	vill decreas	e.	wing effects on a	a chemical reaction?	
	(A) I only		the entropy will the activation of y (C) III	energy will	decrease.	d II only	(E) II and III only	
62		I. 1 II. 2 III. C	$NaCl(s) \rightarrow Na^{\dagger}$ $H_2(g) + O_2(g)$ $CaCO_3(s) \rightarrow Ca$	(aq) + Cl (a → 2H₂O(g) aO(s) + CC)) ₂ (g)			
	(A) I only	(B) II only	(C) I ar	nd II only	(D) I and	d III only	(E) 1, II and III	
63 for car (A) CH	bon dioxide a	nd water. Whi	ch of the follow	wing could		ar formula of the	produces the same e compound?	coefficients
	effective in its		ty, which of the	e following	species would	reactions. If a c	hemist needs a subs ice?	stance that i
,	` '	,	,	` ,	` '	owing reactions	EXCEPT:	
(A) 2 (C) 2 F	$C(s) + O_2(g) = \frac{1}{2}$ $C_2(g) + O_2(g) = \frac{1}{2}$	$\Rightarrow 2 CO(g)$ $\Rightarrow 2 OF_2(g)$	$(s) + O_2(g) \rightarrow 2$	(B) S(s) + (D) 2 Na(s)	$O_2(g) \rightarrow SO_2(g)$ s) + $O_2(g) \rightarrow N$	g) a ₂ O ₂ (s)		
	the equation	coefficient for 0	n represented	→ H ₂ O(<i>g</i> above is b) + CO ₂ (g) alanced and al (E) 6	I coefficients are	e reduced to the lowe	est whole-
	tallic peroxid	e + CO (I	3) metal + CO	+ O ₂	erally produce: (C) meta ic oxide + CO ₂	allic hydroxide +	· CO ₂	
68		_ A 5.00 M sol	ution with a vo	olume of 40	00. mL is left ur	ncovered and 7	5.0 mL evaporates.	What is the
new m	olarity of the (A) 6.15 M	solution? (B) 26.7 ľ	M (C) 4.2	1 M (E	O) 5.00 M	(E) 5.33		
69 solutio		_			of ethanol (C ₂	H₅OH). Calcula	te the volume perce	nt of this
	(A) 20.7%	(B) 4.83°	% (C) 7.4°	7% (E	0) 4.50%	(E) 0.207%		

81 solubili	ty of CaF ₂ ?				th of the following expressions is equal to the ${\rm (C)}^{-3}\sqrt{4x10^{-11}}~{\rm M}$ M
82 saturat					M dissolved in 2.0 L of water at 25°C to form a $(C) 6.8 \times 10^{-4}$ mol nol
83 If a 0.0	The in $C_6H_5COOH(aq)$ 45 M solution of b $(A) 7.7 \times 10^{-5}$	onization of ber qe H $^{+}$ (aq) + C ₆ H enzoic acid has (D) 8.4 x IO $^{-1}$	nzoic acid is rep H ₅ COO ⁻ (aq) s an [H ⁺] = 1.7 x (B) 6.7 x IO ⁻⁵	resented by this 10^{-3} , what is the (E) 2.9×10^{-6}	equation. K _a of benzoic acid? (C) 3.8 x l0 ⁻²
	$_{\rm pullibrium\ C_6H_5}$ $_{\rm pullibrium\ C_6H_5OH(aq)}$	for this reaction	n is less than 1.	What is the stror	ngest base in this system? (C) HCN(aq) re equal in strength
85	What (A) HPO ₄ ² -(aq)	is the conjugate (D) H ₃ PO ₄ (aq)	e base of H ₂ PO ₄ (B) H ₂ O(l)	? (E) HPO ₄	(C) HPO ₄ ⁻ (aq)