Name	e		Hon	ors Cnemistry	/	
Gas L	aws Review – Pr	actice Test II		•		
1.	A sam	nple of 5.16 grams	of an ideal gas at	150.0 °C and 1.25	atmospheres pressure has a volume of 2.	.00 liters. What
	molar mass of the		or an racar gas at	100.0 0 4.14 1.20	annospiiotos prossuro nas a votamo er z	, , , , , , , , , , , , , , , , , , ,
	(A) 0.0218 gran	m/mole	(B) 16.2 grams	s/mole	(C) 37.0 grams/mole	
	(D) 45	5.8 grams/mole		(E) 71.6 grams/	mole	
2.	A gas	has a volume of 4.0	L at a pressure	of 0.80 atm. What i	s the volume if the pressure is changed to	o 0.20 atm at
	nt temperature?		F		Freezens of the second of the	
	(A) 1.0 L	(B) 2.0 L	(C) $8.0 L$	(D) 16 L	(E) 6 L	
3	Equal	numbers of moles	of CO2(g) SO2(g	and H2O(g) are n	laced in a glass vessel at 400. K. If the v	vessel has a
					lues of the partial pressures of the gases	
the ves		the gas mixture ha				
	$(A) P_{CO2} < P_{SO2}$				(C) $P_{SO2} < P_{CO2} < P_{H2O}$	
		$(D) P_{H2O} < P_{CO2}$	$<$ P_{SO2}	$(E) P_{CO2} = P_{SO2}$	$=P_{ m H2O}$	
4	A 0.23	9 g sample of a ga	s in a 100-mL fla	sk exerts a pressure	of 1520 mmHg at 14 °C. What is the ga	as?
				(D) xenon		
_	A	1	f 222	2000 - 1	Wiley all acceptable	:6:4
		pie of neon gas nas the same pressure?		mL at 30.°C and a	certain pressure. What volume would it	occupy if it
were n	(A) 366 mL	(B) 399 mL	(C) 333 mL	(D) 666 mL	(E) 167 mL	
		. ,	. ,	, ,		
				1°C. At 21°C the v	apor pressure of water is 18.7 torr. If the	ne barometric
pressu		t is the pressure of (B) 777 torr	(C) 739 torr	(D) 48.2 torr	(E) 18.7 torr	
	(A) 738 toll	(b) /// ton	(C) 739 tol1	(D) 46.2 ton	(E) 18.7 tol1	
7	Calcu	late the root mean	square velocity o	f a sample of 10.0 g	grams of helium atoms at 55.0 °C.	
	(A) 45.2 m/s	(B) 142 m/s	(C) 1010 m/s	(D) 1110 m/s	(E) 1430 m/s	
0	***	1 6				
		a sample of oxyge ollowing is also dou		container of consta	nt volume is heated until its Celsius tem	perature is
double				ial energy of the mo	olecules (C) The pressure of the gas	
				cules (E) No		
_						
	Helium rature? Methane d		h methane, CH ₄ .	How do the diffusi	on rates of helium and methane compare	at the same
temper	(A) $\frac{1}{2}$ as fast as		(B) four times	as fast as helium.	(C) twice as fast as helium.	
		the same rate as he		(E) $\frac{1}{4}$ as fast as		
10		r which conditions			(C) low D and high T	
	(A) high P and (D) hi	gh P and high T	(D) 10	ow P and low T (E) a gas will be	(C) low P and high T chave ideally at all conditions	
	(2)	B. 1 m. m. m. 1.		(2) a gas will ex	ina vo racany ac an conductors	
11					ontainer. Which statement is correct?	
		ge kinetic energy o				
		ge kinetic energy of				
		are of the gas increater in the gas triple		ıı.		
		re of the gas increa		ercent.		
12				10.°C and 1.5 atm?	(E) W	
	(A) Ar	(B) Ne	(C) CO	(D) CH ₄	(E) Kr	
		s mixture at 27°C a	nd 760 mm Hg c	ontains 1.0 g each of	of He, O ₂ , N ₂ and CO. How do their aver	age molecular
speeds	compare? (A) He = O_2 =	$N_2 = CO$	(B) O N -	= CO < He	(C) He $<$ CO $=$ N ₂ $<$ O ₂	
		$O < O_2 < N_2 < He$	(D) $O_2 < N_2 -$	(E) He $<$ O ₂ $<$ 0		
	(2)0	- 2		· / · · · / · ·	· 🛥	

	of the following	would express th	e approximate de	nsity of sulfur dio	xide gas at 0°C and 3.00 atm pressure
(in grams per liter)? (A) 2.2 g/L	(B) 43 g/I	(C) 65 g/I	(D) 8.6 g/L	(E) 55 g/I	
(A) 2.2 g/L	(D) 4.3 g/L	(C) 0.3 g/L	(D) 6.0 g/L	(E) 3.3 g/L	
15 2Li(s)					
	ydrogen produce	ed if 3.55 grams o	of Li react with ex	cess HCl if the pre	essure is 0.98 atm and the temperature
is 29.0 °C. (A) 6.50 L	(B) 13.0 L	(C) 2 25 I	(D) 44.9 L	(E) 80 8 I	
(A) 0.30 L	(b) 13.0 L	(C) 3.23 L	(D) 44.9 L	(L) 69.6 L	
			ne of 40.0 L with A	Ar, Kr, and Xe, res	spectively. Which statement is true
under the same conditions					
				nave the same kine	
(C) The densities	(E) A1	es are the same. Loases have the sa	ame root mean sq	will all effuse at thuare velocity	ne same rate.
Questions 17–19 refer to				uare verserry.	
(A) Ne	(B) Xe		(C) O ₂	(D) C	CO (E) NO
17 Has ar	n average atomic	or molecular spe	ed closest to that	of N_2 molecules at	0°C and 1 atm.
18 Has the	e greatest density	<i>i</i> .			1 1 1 1 1 1 1
					<u>f</u> 1.5
19 Has th	e greatest rate of	f effusion through	a pinhole.		g 1.0
Ornactions 20, 22 The abo	4: f 4		V :h +- +h -	mi mlas	nss
Questions 20–22 The pha	se diagram for tr	ne pure substance	X is snown to the	right.	ළී 0.5
20 The t	temperature of a	sample of pure s	solid X is slowly	raised from 10°C	to 0
100°C at a constant pressu					0 20 40 60 80 100 Temperature (°C)
(A) It first melts to					remperature (*C)
(B) It first melts to				11 212	
(C) It melts to a liq (D) It sublimes to v				quia untii the temp	perature is greater than 100°C.
(E) It remains a sol					
	_	_			
21 What i	s the approximat	e normal boiling	point for a pure sa	ample of substance	e X?
(A) 28 °C	(B) 37 °C	(C) 60 °C	(D) 70°C	(E) 102 °C	
22 Which	state of matter of	of substance X is t	he most dense?		
(A) all states are	equally dense	(B) it	is impossible to d	etermine without i	more information
(C) solic	l X	(D) liquid X		(E) gas X	
23.					
23	Substa		Equilibrium Vapo	or Pressure at 20°C	C (torr)
	C ₆ H ₆			75 44	
	C ₂ H ₅ O			92	
	C ₄ H ₉ O			32	
	C ₂ H ₆ C			0.06	
Based on the data in the ta		•	liquid substances		ntermolecular forces?
(A) $C_6H_6(l)$			(D) $C_4H_9OH(l)$		
() -00(-)	(-) -23(-)	(=) ===3===(-)	(=) = 4==) = ==(:,	, (=) = 2==0 = 2(*)	10 /
Questions 24–25 Use the	phase diagram fo	or a pure substanc	e shown to the rig	ght.	/
24 (1)		1 1'	C 1 .	TDI 1	mag 8 t
24 Shown under the conditions corre					ğ 6+
		n A on the diagram	m is cooled to 40°	(While the	
pressure remains constant.					S S S A
(A) gas to liquid	As the substance		of the substance		
	As the substance to solid to gas	e cools, the phase (B) gas to solid (D) liquid to so	of the substance to liquid		8 4 2 → X
(A) gas to liquid	As the substancto solid	e cools, the phase (B) gas to solid (D) liquid to so	of the substance to liquid		2
(A) gas to liquid (C) solid to liquid	As the substance to solid d to gas (E) liquid to gas	e cools, the phase (B) gas to solid (D) liquid to so s to solid	e of the substance I to liquid olid to gas	changes from	2 20 40 60 80 100 120
(A) gas to liquid (C) solid to liquid	As the substance to solid I to gas (E) liquid to gas ich temperature	e cools, the phase (B) gas to solid (D) liquid to so s to solid	e of the substance I to liquid olid to gas bstance X a liquid	changes from	2 0 20 40 60 80 100 120 Temperature (°C)

	e of the gases in the	flask is 800 mm	Hg. What is the	partial pressure o), and 0.50 mole of $O_2(g)$. The fine $SO_2(g)$ in the flask? (g) (E) 160 mm Hg	e total	
27	(A) high temperatu	ures and high pre	essure (B) hig sure (D) lov				
28	A 2 L co	ontainer will hold	d about 4 g of wh	nich of the follow	ing gases at 0°C and 1 atm? (E) NH ₃		
	$(A) SO_2$	(B) N ₂	(C) CO ₂	(D) C_4H_8	(E) NH ₃		
29	(A) Ar Which			ost ideal behavior (D) CH ₄	r at 25°C and 1 atm? (E) O ₂		
30	Three	gases in the amo	unts shown in the	e table to the righ	t are added to a previously	Gas	Amount
	C	total pressure in	the tank is 3.0 a	tm at 25 C, the pa	artial pressure of N ₂ (g) in	Ar	0.35 mol
the tan	k is closest to: (A) 0.75 atm		(B) 0.50 atm	(C) 0	33 atm	CH ₄	0.90 mol
	(D) 0.25 atm		(E) 0.17 atm	(C) 0.	33 attii	N_2	0.25 mol
32 When 0°C an	(A) 1,200 K (25.6 g of S ₈ (s) reacts d 1.00 atm, produced (A) 30 L	(B) 600 K s completely wit d is closest to: (B) 20 L	(C) 550 K $8H_2(g) + S_8(s)$ h an excess of H (C) 10 L	(D) 270 K $\Rightarrow 8H_2S(g)$ $H_2(g) according to (D) 5 L$	on gas at 2.0 atm occupy avo (E) 140 K the equation above, the vol (E) 2 L would a real gas be most 1	ume of $H_2S(g)$, measured at
behavi		ich of the follow	ving temperature	es and pressures	would a leaf gas be most i	irkery to devia	te from idear
	Temperature (K)	Pressure (at	tm)				
(A)	100	50					
(B)	200	5					
(C)	300	0.01					
(D)	500	0.01					
(E)	500	1					
34		ollowing gases, v(B) NO(g)	which has the gree (C) H ₂ S(g)	eatest average mo (D) HCN(g)	lecular speed at 298 K? (E) PH ₃ (g)		
35	Which	liquid is most vo	latile at 25°C?				
	(A) butane, C ₄ H ₁₀	•	(B) glycerol, C		(C) octane, C_8H_{18}		
	((D) propanol, C ₃	H ₇ OH	(E) nonane, C	$_{10}H_{22}$		

Free Response

- 1. A rigid 5.00 L cylinder contains 24.5 g of $N_2(g)$ and 28.0 g of $O_2(g)$.
- (a) Calculate the total pressure, in atm, of the gas mixture in the cylinder at 298 K.(b) The temperature of the gas mixture in the cylinder is decreased to 280 K. Calculate each of the following.
 - (i) The mole fraction of $N_2(g)$ in the cylinder
 - (ii) The partial pressure, in atm, of $N_2(g)$ in the cylinder

(ii) The partial pressure, in atth, of 1\(\frac{1}{2}\)(g) in the cylinder					
(c) If the cylinder develops a pinhole-sized leak and some of the gaseous mixture escapes, would the ratio $\frac{moles : Nitrogen}{moles : Oxygen}$ in the					
cylinder increase, decrease, or remain the same? Justify your answer.					
A different rigid 5.00 L cylinder contains 0.176 mol of NO(g) at 298 K. A 0.176 mol sample of O ₂ (g) is added to the cylinder, whereaction occurs to produce NO ₂ (g). (d) Write the balanced equation for the reaction. (e) Calculate the total pressure, in atm, in the cylinder at 298 K after the reaction is complete.					