AP Chemistry Exam 4 Chapters 7-9

Part I: 36 Questions, 36 minutes, Multiple Choice, No Calculator Allowed

Bubble the correct answer on the Green side of your scantron for each of the following.

Use the following answers for questions 1 - 5. Choose the molecular geometry for each of the following molecules. You may use an answer more than once. (A) T-shaped (B) see-saw (C) square pyramidal (D) trigonal planar (E) trigonal bipyramidal

(A) T-shaped	(B) see-saw	(C) square pyramidal	(D) trigonal plana	ar (E) trigonal bipyramidal
1. IF ₅				
2. SF ₄				
3. PF ₅				
4. ClF ₃				
5. NO ₃ ¹⁻				()
Use the following	g answers for questions	6 - 10. Choose the molec	ular geometry for e	each of the following molecules. You may
use an answer m (A) tetrahedral	(B) bent	(C) linear	(D) octahedral	(E) trigonal pyramidal
6. SF ₆				
7. XeO ₃				
8. CCl ₂ F ₂				
9. PF ₃				
10. PO ₄ ³⁻				
		6		
Questions 11-14 (A) potassium	(B) bromine	(C) selenium	(D) gallium	(E) calcium
11. Has the small	est atomic radius.			
12. Has the larges	st value for the second io	nization energy.		
13. Has the larges	st electron affinity.			
14. Is diamagnetic	с.			
15. Which of the (A) PCl ₅	following compounds is (B) PBr ₃	LEAST likely to exist? (C) NF ₃	(D) NI ₅	(E) SbF ₅
16. Which of the	following compounds co	ntains both ionic and cova	lent bonds?	
(A) SO ₃	(B) C_2H_5OH	(C) MgF_2	(D) H_2S	(E) NH ₄ Cl
17. Which of the $(A) N_2$	following molecules is n (B) H ₂ O ₂	onpolar but has polar cova (C) H ₂ O	lent bonds? (D) CCl4	(E) CH_2Cl_2
18. Which is NOT(A) They are form(C) Hybrid orbita	Γ true about pi bonds? ned by the sideways over ls are used to form them.	lap of p orbitals.	(B) They are pres(D) They cause ro	ent in double or triple bonds. Detation about a double bond to be restricted.

(E) They place electron density above and below the line joining the nuclei of the bonded atoms.

19. The first five ionization energies of a second-period element are listed in the table to the right. Which of the following correctly identifies the element and best explains the data in the table?

- (A) B, because it has five core electrons
- (B) B, because it has three valence electrons
- (C) C, because it has four valence electrons
- (D) N, because it has five valence electrons
- (E) N, because it has three electrons in the p sublevel

20.
$$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g) \qquad \Delta H^\circ = -196 \text{ kJ/mol}_{rxn}$$

Assume that the bond enthalpies of the oxygen-hydrogen bonds in H_2O are not significantly different from those in H_2O_2 . Based on the value of ΔH° of the reaction, which of the following could be the bond enthalpies (in kJ/mol) for the bonds broken and formed in the reaction?

	O-O in H2O2	O=O on O2	О-Н
(A)	500	300	500
(B)	300	500	500
(C)	150	500	500
(D)	500	300	150
(E)	250	300	150

21.
$$C_2H_2(g) + Cl_2(g) \rightarrow C_2H_2Cl_2(g)$$

When the reaction above occurs, does the hybridization of the carbon atoms change?

(C) Yes; it changes from sp^3 to sp^2 (A) Yes; it changes from sp to sp^2 (B) Yes; it changes from sp to sp^3 (D) Yes

(E) No; it does not change

22. The Lewis electron-dot diagrams of the HClO₃ molecule and the HClO₂ molecule are shown at the left and right, respectively. Which of the following statements identifies the stronger acid and correctly identifies a factor that contributes to its being the stronger acid?

(A) $HClO_3(aq)$ is the stronger acid because its molecules experience stronger hydrogen bonding.

(B) HClO₃(aq) is the stronger acid because its molecules experience stronger

London dispersion forces.

(C) $HClO_3(aq)$ is the stronger acid because the additional electronegative oxygen atom on the chlorine atom stabilizes the conjugate base.

(D) $HClO_2(aq)$ is the stronger acid because its molecules experience weaker London dispersion forces.

(E) $HClO_2(aq)$ is the stronger acid because the lone pairs of electrons on the chlorine atom stabilize the conjugate base.

23. The diagram to the right represents the absorption spectrum for a pure molecular substance. Which of the following correctly indicates the type of transition observed for the

substance in each of the regions of the absorption spectrum?

	Region X	Region Y	Region Z
(A)	Molecular	Molecular	Electronic
(A)	vibration	rotation	transition
(\mathbf{D})	Electronic	Molecular	Molecular
(D)	transition	rotation	vibration
(\mathbf{C})	Molecular	Molecular	Electronic
(C)	rotation	vibration	transition
(\mathbf{D})	Electronic	Molecular	Molecular
(D)	transition	vibration	rotation
(E)	Molecular	Electronic	Molecular
(E)	vibration	transition	rotation

	Ionization Energy
	(kJ/mol)
First	801
Second	2,430
Third	3,660
Fourth	25,000
Fifth	32,820

24. Which of the following correctly identifies which has the higher first-ionization energy, Cl or Ar, and supplies the best justification?

(A) Cl, because of its higher electronegativity (B) Cl, because of its higher electron affinity

(C) Ar, because of its completely filled valence shell (D) Ar, because of its higher effective nuclear charge

(E) Ar because it has a smaller atomic radius

25. The table to the right shows the first ionization energy and atomic radius of several elements. Which of the following best helps to explain the deviation of the first ionization energy of oxygen from the overall trend?

- (A) The atomic radius of oxygen is greater than the atomic radius of fluorine.
- (B) The atomic radius of oxygen is less than the atomic radius of nitrogen.
- (C) There is repulsion between paired electrons in oxygen's 2p orbitals.
- (D) There is attraction between paired electrons in oxygen's 2p orbitals.
- (E) Oxygen has more protons than nitrogen.

26. $CO(g) + 2 H_2(g) \rightleftharpoons CH_3OH(g) \qquad \Delta H < 0$

Which of the following statements is true about bond energies in this reaction?

(A) The energy absorbed as the bonds in the reactants are broken is greater than the energy released as the bonds in the product are formed.

(B) The energy released as the bonds in the reactants are broken is greater than the energy absorbed as the bonds in the product are formed.

(C) The energy absorbed as the bonds in the reactants are broken is less than the energy released as the bonds in the product are formed.

(D) The energy released as the bonds in the reactants are broken is less than the energy absorbed as the bonds in the product are formed.

(E) The energy released as the bonds in the reactants are broken is equal to the energy absorbed as the bonds are formed.

27. The potential energy as a function of internuclear distance for three diatomic molecules, X_2 , Y_2 and Z_2 , is shown in the graph above. Based on the data in the graph, which of the following correctly identifies the diatomic molecules, X_2 , Y_2 , and Z_2 ?

	X_2	\mathbf{Y}_2	Z_2
(A)	H ₂	N_2	O ₂
(B)	H ₂	O ₂	N ₂
(C)	N_2	O ₂	H ₂
(D)	O ₂	H ₂	N ₂
(E)	N_2	H_2	O ₂

1000 X_2 Y_2 Z_2 800 600 otential Energy (kJ/mol) 400200 θ Internuclear Distance -200-400 -600 -800 -1000

28. A sample containing atoms of C and F was analyzed using x-ray photoelectron spectroscopy. The portion of the spectrum showing the 1s peaks for atoms of the two elements is shown to the right. Which of the following correctly identifies the 1s peak for the F atoms and provides an appropriate explanation?

(A) Peak X, because F has a smaller first ionization energy than C has.

(B) Peak X, because F has a greater nuclear charge than C has.

(C) Peak Y, because F is more electronegative than C is.

(D) Peak Y, because F has a larger ionization energy than C has.

(E) Peak Y, because F has a smaller atomic radius than C has.

Element	First Ionization Energy (kJ/mol)	Atomic Radius (pm)
В	801	85
С	1086	77
Ν	1400	75
0	1314	73
F	1680	72
Ne	2080	70

29. The BF_3 molecule is nonpolar, whereas the NF_3 molecule is polar. Which of the following statements accounts for the difference in polarity of the two molecules?

(A) In NF₃, each F is joined to N with multiple bonds, whereas in BF₃, each F is joined to B with single bonds.

(B) N – F bonds are polar, whereas B – F bonds are nonpolar.

(C) NF₃ is an ionic compound, whereas BF₃ is a molecular compound.

(D) Nitrogen has a higher electronegativity than boron.

(E) Unlike BF₃, NF₃ has a non-planar geometry due to an unshared pair of electrons on the N atom.

30. Which of the following arranges the molecules N_2 , O_2 , and F_2 in order of their bond enthalpies, from least to greatest? (A) $F_2 < O_2 < N_2$ (B) $O_2 < N_2 < F_2$ (C) $N_2 < O_2 < F_2$ (D) $N_2 < F_2 < O_2$ (E) $O_2 < F_2 < N_2$

31. Based on Coulomb's law and the information in the table above, which of the following cations is most likely to have the weakest interaction with an adjacent water molecule in an aqueous solution? (C) Ca^{2+} (D) In^{3+} (A) Li^+ (B) Na^+

32. For element X represented above, which of the following is the most likely explanation for the large difference between the second and third ionization energies?

$X(g) \rightarrow X^+(g) + e^-$	$IE_1 = 740 \text{ kJ/mol}$
$X^+(g) \rightarrow X^{2+}(g) + e^-$	$IE_2 = 1450 \text{ kJ/mol}$
$X^{2+}(g) \rightarrow X^{3+}(g) + e^{-1}$	$IE_3 = 7730 \text{ kJ/mol}$

(A) The effective nuclear charge decreases with successive ionizations.

(B) The shielding of outer electrons increases with successive ionizations.

(C) The electron removed during the third ionization is, on average, much closer to the nucleus than

the first two electrons removed were.

(D) The ionic radius increases with successive ionizations.

33. On the basis of the information above, which of the following arranges the binary compounds in order of increasing bond polarity?

(A) $CH_4 < SiC1_4 < SF_4$ (B) $CH_4 < SF_4 < SiC1_4$ (C) $SF_4 < CH_4 < SiC1_4$ (D) SiC1₄ < SF₄ < CH₄

34. Which of the following Lewis electron-dot diagrams represents the molecule that contains the smallest bond angle?

Ö: (D)	:ö—
-----------	-----

Element	Known Oxides
Н	H_2O , H_2O_2
Li	Li_2O , Li_2O_2
Na	Na ₂ O, Na ₂ O ₂ , NaO ₂
K	K_2O, K_2O_2, KO_2

Ś=Ö

	Ionization Energy (kJ/mol)
First	577
Second	1,816
Third	2,745
Fourth	11,577
Fifth	14,482

35. Based on the information above and periodic trends, which of the following is the best hypothesis regarding the oxide(s) formed by Rb?

(A) Rb will form only Rb₂O. (B) Rb will form only RbO₂.

(C) Rb will form only Rb₂O and Rb₂O₂. (D) Rb will form Rb₂O, Rb₂O₂, and RbO₂.

36. Based on the ionization energies of element X given in the table above, which of the following is most likely the empirical formula of an oxide of element X? (A) XO_2 $(B) X_2O$ (C) X₂O₃ (D) X_2O_5

Ion	Ionic Radius (pm)
Li ⁺	60
Na ⁺	95
Ca ²⁺	99
In ³⁺	81

Element	Electronegativity
Н	2.1
С	2.5
S	2.5
F	4.0
Cl	3.0
Si	1.8