| Name | AP Chem | // | |---|--|---| | Chapter 14 HW - #3 (D | oue 11/21/2019)
ponse questions. Show all work. Box and c | early label all final answers | | 1. In water, hydrazoic acid, Hof a 0.040-molar solution of t | $4N_3$, is a weak acid that has an equilibrium constant, K_a , he acid is prepared. | equal to 2.8 x 10 ⁻⁵ at 25°C. A 0.800-liter sample | | (b) Calculate the pH of this s(c) Calculate the percent ioni | zation of the solution. | | | (d) To 0.150 liter of this solu | tion, 0.80 gram of sodium azide, NaN ₃ , is added. The same volume of the solution remains unchanged. | alt dissolves completely. Calculate the pH of the |) | 2. NH₃(aq) + H₂O(l) ← →NH₄⁺(aq) + OH⁻(aq) In aqueous solution, ammonia reacts as represented above. In 0.0480 <i>M</i> NH₃(aq) at 25°C, the hydroxide ion concentration, [OH⁻], is 7.30 x 10⁻⁵ <i>M</i>. In answering the following, assume that temperature is constant at 25°C and that volumes are additive. (a) Write the equilibrium-constant expression for the reaction represented above. (b) Determine the pH of 0.0480 <i>M</i> NH₃(aq). (c) Determine the value of the base ionization constant, K_b, for NH₃(aq). (d) Determine the percent ionization of NH₃ in 0.0480 <i>M</i> NH₃(aq). | |--| 3. A pure 16.85 g sample of the weak base ethylamine, C₂H₅NH₂, is dissolved in enough distilled water to make 500. mL of solution. (a) Calculate the molar concentration of the C₂H₅NH₂ in the solution. The aqueous ethylamine reacts with water according to the equation below. C₂H₅NH₂(aq) + H₂O(l) ← → C₂H₅NH₃+(aq) + OH(aq) (b) Write the equilibrium-constant expression for the reaction between C₂H₅NH₂(aq) and water. (c) Of C₂H₅NH₂(aq) and C₂H₅NH₃+(aq), which is present in the solution at the higher concentration at equilibrium? Justify your answer. (d) A different solution is made by mixing 500. mL of 0.500 *M* C₂H₅NH₂ with 500. mL of 0.200 *M* HCl. Assume that volumes are additive. The pH of the resulting solution is found to be 10.93. (i) Calculate the concentration of OH⁻(aq) in the solution. (ii) Write the net-ionic equation that represents the reaction that occurs when the C₂H₅NH₂ solution is mixed with the HCl solution. (iii) Calculate the molar concentration of the C₂H₅NH₃+(aq) that is formed in the reaction. (iv) Calculate the value of K_b for C₂H₅NH₂. | (iv) Ca | alculate the molar concentration of the $C_2H_5NH_3^+(aq)$ that is formed in the reaction. alculate the value of K_b for $C_2H_5NH_2$. | | |---------|---|--| 4. $HC_3H_5O_2(aq) \leftarrow \Rightarrow C_3H_5O_2^-(aq) + H^+(aq) K_a = 1.34 \times 10^{-5}$
Propanoic acid, $HC_3H_5O_2$, ionizes in water according to the equation above.
(a) Write the equilibrium-constant expression for the reaction.
(b) Calculate the pH of a 0.365 <i>M</i> solution of propanoic acid. | |--| | (c) A 0.496 g sample of sodium propanoate, NaC ₃ H ₅ O ₂ , is added to a 50.0 mL sample of a 0.365 <i>M</i> solution of propanoic acid. Assuming that no change in the volume of the solution occurs, calculate each of the following. (i) The concentration of the propanoate ion, C ₃ H ₅ O ₂ ⁻ (<i>aq</i>), in the solution | | (ii) The concentration of the $H^+(aq)$ ion in the solution
The methanoate ion, $HCO_2^-(aq)$, reacts with water to form methanoic acid and hydroxide ion, as shown in the following equation.
$HCO_2^-(aq) + H_2O(l) \Longrightarrow HCO_2H(aq) + OH^-(aq)$ | | (d) Given that [OH ⁻] is $4.18 \times 10^{-6} M$ in a $0.309 M$ solution of sodium methanoate, calculate each of the following.
(i) The value of K_b for the methanoate ion, HCO ₂ ⁻ (aq)
(ii) The value of K_a for methanoic acid, HCO ₂ H | | (e) Which acid is stronger, propanoic acid or methanoic acid? Justify your answer. |