| Names                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| AP Chemistry - Chapters 5 & $6$ - Quick Partner Quiz - 18 minutes<br>Solve the following thermodynamics and gas laws problems You must show all work and use the proper number of significant                                                                                                                                                                                                                                                                              | cant figures. |
| 1. $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$<br>The combustion of carbon monoxide is represented by the equation above.<br>(a) Determine the value of the standard enthalpy change, $\Delta H_{rxn}$ , for the combustion of $CO(g)$ at 298 K using the following information.                                                                                                                                                                                       |               |
| $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$ $\Delta H_{298} = -110.5 \text{ kJ mol}^{-1}$ $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H_{298} = -393.5 \text{ kJ mol}^{-1}$ (b) Calculate the value of $\Delta H_{rxn}$ if 420.0 L of $O_2$ are reacted with the correct stoichiometric amount of CO (g) at a pressure Hg at 30.0 °C.                                                                                                                                     | of 777 mm     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| <ul> <li>2. Reaction X: ½ I<sub>2</sub>(s) + ½ Cl<sub>2</sub>(g)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| 3. $N_2(g) + 3F_2(g) \rightarrow 2NF_3(g)$ $\Delta H^{\circ}_{298} = -264 \text{ kJ mol}^{-1}$ (a) Calculate the standard enthalpy change, $\Delta H^{\circ}$ , that occurs when a 0.456 mol sample of NF <sub>3</sub> (g) is formed from N <sub>2</sub> (g) and 1.00 atm and 298 K. (b) Determine the root mean square velocity of NF <sub>3</sub> (g) when a 0.456 mol sample of NF <sub>3</sub> (g) is formed from N <sub>2</sub> (g) and F <sub>2</sub> (g) and 298 K. | _             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |